Pose estimation of a low altitude aerial vehicle using quaternion theory and kalman filter

S. Aravindan, P. Kaleeswaran
{"title":"Pose estimation of a low altitude aerial vehicle using quaternion theory and kalman filter","authors":"S. Aravindan, P. Kaleeswaran","doi":"10.1109/RSTSCC.2010.5712838","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to estimate the pose (attitude) of a low altitude aerial vehicle using quaternion theory and kalman filter method. Initially using quaternion theory, the quaternion rates are determined to compute the vector quaternion. This vector quaternion is used to determine the quaternion transition matrix. So, after finding out these values the state variable assignment is written according to the characteristic movement of an aerial vehicle. While framing the equation, the altitude of an aerial vehicle is taken considerably low and the fourteen variables are considered to frame this equation namely linear translation in each axis, linear velocities in each axis, three directions, the deceleration of the vehicle, rotation quaternion in each axis, rotation velocity in each axis. Initially, the values are assumed from INS and the calculations are done. Thereafter the kalman filter method is used to estimate the state function in order to determine the position, velocity and position of the aerial vehicle","PeriodicalId":254761,"journal":{"name":"Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSTSCC.2010.5712838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this paper is to estimate the pose (attitude) of a low altitude aerial vehicle using quaternion theory and kalman filter method. Initially using quaternion theory, the quaternion rates are determined to compute the vector quaternion. This vector quaternion is used to determine the quaternion transition matrix. So, after finding out these values the state variable assignment is written according to the characteristic movement of an aerial vehicle. While framing the equation, the altitude of an aerial vehicle is taken considerably low and the fourteen variables are considered to frame this equation namely linear translation in each axis, linear velocities in each axis, three directions, the deceleration of the vehicle, rotation quaternion in each axis, rotation velocity in each axis. Initially, the values are assumed from INS and the calculations are done. Thereafter the kalman filter method is used to estimate the state function in order to determine the position, velocity and position of the aerial vehicle
基于四元数理论和卡尔曼滤波的低空飞行器位姿估计
本文的目的是利用四元数理论和卡尔曼滤波方法对低空飞行器进行姿态估计。首先使用四元数理论,确定四元数速率来计算向量四元数。这个向量四元数用于确定四元数转换矩阵。因此,在求出这些值后,根据飞行器的运动特征进行状态变量的赋值。在构建方程时,飞行器的高度相当低,并且考虑了14个变量来构建该方程,即每个轴的线性平移,每个轴的线速度,三个方向,飞行器的减速,每个轴的旋转四元数,每个轴的旋转速度。最初,从INS中假设值并进行计算。然后利用卡尔曼滤波方法对状态函数进行估计,从而确定飞行器的位置、速度和位置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信