EXPRESS: CNN EXecution Time PREdiction for DPU DeSign Space Exploration

Shikha Goel, Rajesh Kedia, Rijurekha Sen, M. Balakrishnan
{"title":"EXPRESS: CNN EXecution Time PREdiction for DPU DeSign Space Exploration","authors":"Shikha Goel, Rajesh Kedia, Rijurekha Sen, M. Balakrishnan","doi":"10.1109/ICFPT56656.2022.9974299","DOIUrl":null,"url":null,"abstract":"Deep learning Processor Units (DPUs) from Xilinx are design-time configurable CNN accelerators for FPGAs. We propose EXPRESS, which predicts the execution time of any given CNN on a DPU. EXPRESS incorporates the effect of bus connections into prediction. As a DPU is invoked by a host CPU to process a CNN layer by layer, EXPRESS considers the CPU and the DPU execution time for predicting the end-to-end processing time. EXPRESS has an average prediction error of 2.2% and significantly outperforms state-of-the-art.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning Processor Units (DPUs) from Xilinx are design-time configurable CNN accelerators for FPGAs. We propose EXPRESS, which predicts the execution time of any given CNN on a DPU. EXPRESS incorporates the effect of bus connections into prediction. As a DPU is invoked by a host CPU to process a CNN layer by layer, EXPRESS considers the CPU and the DPU execution time for predicting the end-to-end processing time. EXPRESS has an average prediction error of 2.2% and significantly outperforms state-of-the-art.
EXPRESS: DPU设计空间探索的CNN执行时间预测
Xilinx的深度学习处理器单元(DPUs)是用于fpga的设计时可配置CNN加速器。我们提出了EXPRESS,它可以预测任何给定CNN在DPU上的执行时间。EXPRESS将总线连接的影响纳入预测。由于DPU被主机CPU调用逐层处理CNN, EXPRESS考虑CPU和DPU的执行时间来预测端到端处理时间。EXPRESS的平均预测误差为2.2%,明显优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信