CHAPTER 15. Decellularized Extracellular Matrix for the Regulation of Stem Cell Differentiation

T. Hoshiba
{"title":"CHAPTER 15. Decellularized Extracellular Matrix for the Regulation of Stem Cell Differentiation","authors":"T. Hoshiba","doi":"10.1039/9781788015998-00286","DOIUrl":null,"url":null,"abstract":"The regulation of stem cell differentiation is key for the achievement of tissue engineering and regenerative medicine. Differentiation is regulated by an extracellular microenvironment, including the extracellular matrix (ECM), in vivo. Thus, decellularized ECM (dECM) is applied to provide an ECM that mimics the in vivo conditions. Both tissue- or organ-derived dECMs and cultured cell-derived dECMs are applied for the regulation of stem cell differentiation. The tissue- or organ-derived dECMs possess advantages in their heterogeneity due to their basic architectures, and they might induce the site-specific differentiation of stem cells. In contrast, it is feasible to prepare cultured cell-derived dECMs at specific differentiative stages, which might induce strong stem cell differentiation. Additionally, cultured cell-derived dECMs can be used as in vitro ECM models to comprehensively investigate the roles of ECM. Finally, future perspectives on the realization of dECM in stem cell differentiation are described.","PeriodicalId":370951,"journal":{"name":"Decellularized Extracellular Matrix","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decellularized Extracellular Matrix","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788015998-00286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of stem cell differentiation is key for the achievement of tissue engineering and regenerative medicine. Differentiation is regulated by an extracellular microenvironment, including the extracellular matrix (ECM), in vivo. Thus, decellularized ECM (dECM) is applied to provide an ECM that mimics the in vivo conditions. Both tissue- or organ-derived dECMs and cultured cell-derived dECMs are applied for the regulation of stem cell differentiation. The tissue- or organ-derived dECMs possess advantages in their heterogeneity due to their basic architectures, and they might induce the site-specific differentiation of stem cells. In contrast, it is feasible to prepare cultured cell-derived dECMs at specific differentiative stages, which might induce strong stem cell differentiation. Additionally, cultured cell-derived dECMs can be used as in vitro ECM models to comprehensively investigate the roles of ECM. Finally, future perspectives on the realization of dECM in stem cell differentiation are described.
第15章。脱细胞细胞外基质对干细胞分化的调控作用
干细胞分化调控是实现组织工程和再生医学的关键。分化受细胞外微环境的调控,包括细胞外基质(ECM)。因此,脱细胞ECM (dECM)被用于提供一种模拟体内条件的ECM。组织或器官来源的decm和培养细胞来源的decm都被用于干细胞分化的调节。组织或器官来源的decm由于其基本结构而具有异质性优势,并且它们可能诱导干细胞的位点特异性分化。相比之下,在特定的分化阶段制备培养的细胞源性decm是可行的,这可能会诱导强干细胞分化。此外,培养的细胞源性decm可作为体外ECM模型,以全面研究ECM的作用。最后,对dECM在干细胞分化中的应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信