Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots

Ahmad Gazar, M. Khadiv, Sébastien Kleff, A. Prete, L. Righetti
{"title":"Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots","authors":"Ahmad Gazar, M. Khadiv, Sébastien Kleff, A. Prete, L. Righetti","doi":"10.48550/arXiv.2205.13264","DOIUrl":null,"url":null,"abstract":"Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.13264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.
腿式机器人质心动量运动生成的非线性随机轨迹优化
由于机器人具有非线性、混合和不稳定的动力学特性,需要通过有限的接触力来稳定其运动轨迹,因此鲁棒轨迹的生成仍然是一项具有挑战性的任务。此外,由未建模的与环境的接触相互作用和模型不匹配引起的干扰会影响规划轨迹的质量,导致不安全的运动。在这项工作中,我们建议使用随机轨迹优化来生成鲁棒质心动量轨迹,以解释模型动力学上的附加不确定性和接触位置上的参数不确定性。通过鲁棒质心和全身轨迹优化之间的交替,我们生成了与全身动力学一致的鲁棒动量轨迹。我们在一个四足机器人上进行了一系列不同不确定性的模拟,结果表明我们的随机轨迹优化问题减少了不同步态下的足部打滑量,同时获得了比确定性规划更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信