Linguistic Summarization of Time Series Data using Genetic Algorithms

R. Castillo-Ortega, Nicolás Marín, D. Sánchez, A. Tettamanzi
{"title":"Linguistic Summarization of Time Series Data using Genetic Algorithms","authors":"R. Castillo-Ortega, Nicolás Marín, D. Sánchez, A. Tettamanzi","doi":"10.2991/eusflat.2011.145","DOIUrl":null,"url":null,"abstract":"In this paper, the use of an evolutionary approach when obtaining linguistic summaries from time series data is proposed. We assume the availability of a hierarchical partition of the time dimension in the time series. The use of natural language allows the human users to understand the resulting summaries in an easy way. The number of possible final summaries and the dierent ways of measuring their quality has taken us to adopt the use of a multi objective evolutionary algorithm. We compare the results of the new approach with our previous greedy algorithms.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper, the use of an evolutionary approach when obtaining linguistic summaries from time series data is proposed. We assume the availability of a hierarchical partition of the time dimension in the time series. The use of natural language allows the human users to understand the resulting summaries in an easy way. The number of possible final summaries and the dierent ways of measuring their quality has taken us to adopt the use of a multi objective evolutionary algorithm. We compare the results of the new approach with our previous greedy algorithms.
基于遗传算法的时间序列数据语言摘要
本文提出了一种从时间序列数据中获取语言摘要的进化方法。我们假设在时间序列中时间维度的层次划分是可用的。自然语言的使用允许人类用户以一种简单的方式理解生成的摘要。可能的最终总结的数量和衡量其质量的不同方法使我们采用了多目标进化算法的使用。我们将新方法的结果与之前的贪心算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信