A. Margomenos, A. Kurdoghlian, M. Micovic, K. Shinohara, H. Moyer, D. Regan, R. Grabar, C. Mcguire, M. Wetzel, D. Chow
{"title":"W-Band GaN Receiver Components Utilizing Highly Scaled, Next Generation GaN Device Technology","authors":"A. Margomenos, A. Kurdoghlian, M. Micovic, K. Shinohara, H. Moyer, D. Regan, R. Grabar, C. Mcguire, M. Wetzel, D. Chow","doi":"10.1109/CSICS.2014.6978585","DOIUrl":null,"url":null,"abstract":"We report the first W-band GaN receiver components using a next generation, highly scaled GaN device technology. This technology (40nm, fT= 220 GHz, fmax= 400 GHz, Vbrk > 40V) enables receiver components that meet or exceed performance reported by competing device technologies while maintaining > 5x higher breakdown voltage, higher linearity, dynamic range and RF survivability. This paper includes results for a 4 and a 5 stage low noise amplifier (LNA) (gain over 5 dB/stage at 110 GHz), a single-pole single-throw (SPST) and a single-pole double-throw (SPDT) switch with loss of 0.9 dB and 1.3 dB respectively and a reflective type phase shifter","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We report the first W-band GaN receiver components using a next generation, highly scaled GaN device technology. This technology (40nm, fT= 220 GHz, fmax= 400 GHz, Vbrk > 40V) enables receiver components that meet or exceed performance reported by competing device technologies while maintaining > 5x higher breakdown voltage, higher linearity, dynamic range and RF survivability. This paper includes results for a 4 and a 5 stage low noise amplifier (LNA) (gain over 5 dB/stage at 110 GHz), a single-pole single-throw (SPST) and a single-pole double-throw (SPDT) switch with loss of 0.9 dB and 1.3 dB respectively and a reflective type phase shifter