Inverse kinematics of a NAO humanoid robot using kinect to track and imitate human motion

Shohin Mukherjee, D. Paramkusam, S. K. Dwivedy
{"title":"Inverse kinematics of a NAO humanoid robot using kinect to track and imitate human motion","authors":"Shohin Mukherjee, D. Paramkusam, S. K. Dwivedy","doi":"10.1109/RACE.2015.7097245","DOIUrl":null,"url":null,"abstract":"In this paper, three methods to imitate human upper body motion are implemented on a NAO humanoid robot: (i) direct angle mapping method (ii) inverse kinematics using fuzzy logic and (iii) inverse kinematics using iterative Jacobian. In the first method, the Kinect sensor is used to obtain coordinates of the shoulder, elbow and wrist joints of the operator. The four angles that are required to completely describe the position of the robot's wrist- shoulder roll, shoulder pitch, elbow roll and elbow yaw- are then calculated using vector algebra. In a unique approach, the human arm lengths instead of the robot's link lengths are used to find the inverse kinematics model for the robot arms. The model is then used to train adaptive neural network and the inverse kinematics problem is solved using the trained ANFIS in the second method. In the third approach, the Jacobian matrices of the arms are first found by differentiating the position components of the transformation matrix with respect to the joint variables. The Moore-Penrose pseudo-inverse of the Jacobian is then used to iteratively solve the inverse kinematics problem. Performance of the three methods is then compared.","PeriodicalId":161131,"journal":{"name":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RACE.2015.7097245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper, three methods to imitate human upper body motion are implemented on a NAO humanoid robot: (i) direct angle mapping method (ii) inverse kinematics using fuzzy logic and (iii) inverse kinematics using iterative Jacobian. In the first method, the Kinect sensor is used to obtain coordinates of the shoulder, elbow and wrist joints of the operator. The four angles that are required to completely describe the position of the robot's wrist- shoulder roll, shoulder pitch, elbow roll and elbow yaw- are then calculated using vector algebra. In a unique approach, the human arm lengths instead of the robot's link lengths are used to find the inverse kinematics model for the robot arms. The model is then used to train adaptive neural network and the inverse kinematics problem is solved using the trained ANFIS in the second method. In the third approach, the Jacobian matrices of the arms are first found by differentiating the position components of the transformation matrix with respect to the joint variables. The Moore-Penrose pseudo-inverse of the Jacobian is then used to iteratively solve the inverse kinematics problem. Performance of the three methods is then compared.
利用kinect跟踪和模仿人体运动的NAO类人机器人的逆运动学
本文在NAO类人机器人上实现了三种模拟人体上体运动的方法:(1)直接角度映射法;(2)模糊逻辑逆运动学;(3)迭代雅可比矩阵逆运动学。在第一种方法中,使用Kinect传感器获取操作者肩关节、肘关节和手腕关节的坐标。完整描述机器人手腕位置所需的四个角度——肩侧转、肩侧转、肘部侧转和肘部偏转——然后使用矢量代数计算。采用一种独特的方法,用人的手臂长度代替机器人的连杆长度来建立机器人手臂的逆运动学模型。然后利用该模型对自适应神经网络进行训练,利用训练后的神经网络求解反运动学问题。在第三种方法中,首先通过对变换矩阵的位置分量相对于关节变量求导得到臂的雅可比矩阵。然后利用雅可比矩阵的Moore-Penrose伪逆来迭代求解运动学逆问题。然后比较了三种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信