Claus Braun, S. Holst, H. Wunderlich, Juan Manuel Castillo-Sanchez, J. Gross
{"title":"Acceleration of Monte-Carlo molecular simulations on hybrid computing architectures","authors":"Claus Braun, S. Holst, H. Wunderlich, Juan Manuel Castillo-Sanchez, J. Gross","doi":"10.1109/ICCD.2012.6378642","DOIUrl":null,"url":null,"abstract":"Markov-Chain Monte-Carlo (MCMC) methods are an important class of simulation techniques, which execute a sequence of simulation steps, where each new step depends on the previous ones. Due to this fundamental dependency, MCMC methods are inherently hard to parallelize on any architecture. The upcoming generations of hybrid CPU/GPGPU architectures with their multi-core CPUs and tightly coupled many-core GPGPUs provide new acceleration opportunities especially for MCMC methods, if the new degrees of freedom are exploited correctly. In this paper, the outcomes of an interdisciplinary collaboration are presented, which focused on the parallel mapping of a MCMC molecular simulation from thermodynamics to hybrid CPU/GPGPU computing systems. While the mapping is designed for upcoming hybrid architectures, the implementation of this approach on an NVIDIA Tesla system already leads to a substantial speedup of more than 87× despite the additional communication overheads.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Markov-Chain Monte-Carlo (MCMC) methods are an important class of simulation techniques, which execute a sequence of simulation steps, where each new step depends on the previous ones. Due to this fundamental dependency, MCMC methods are inherently hard to parallelize on any architecture. The upcoming generations of hybrid CPU/GPGPU architectures with their multi-core CPUs and tightly coupled many-core GPGPUs provide new acceleration opportunities especially for MCMC methods, if the new degrees of freedom are exploited correctly. In this paper, the outcomes of an interdisciplinary collaboration are presented, which focused on the parallel mapping of a MCMC molecular simulation from thermodynamics to hybrid CPU/GPGPU computing systems. While the mapping is designed for upcoming hybrid architectures, the implementation of this approach on an NVIDIA Tesla system already leads to a substantial speedup of more than 87× despite the additional communication overheads.