Bayesian fusion: Modeling and application

J. Sander, J. Beyerer
{"title":"Bayesian fusion: Modeling and application","authors":"J. Sander, J. Beyerer","doi":"10.1109/SDF.2013.6698254","DOIUrl":null,"url":null,"abstract":"Bayesian statistics leads to a powerful fusion methodology, especially for the fusion of heterogeneous information sources. If fusion problems are handled under consideration of the full expressiveness and the full range of methods provided by Bayesian statistics, the Bayesian fusion methodology possesses an impressive wide range of applications. We discuss this by having a closer look at selected aspects of Bayesian modeling. Thereby, also parallels to other methods used for information fusion will be drawn. With regard to the practical tractability of Bayesian fusion problems, selected approaches to deal with its potentially high complexity are discussed.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Bayesian statistics leads to a powerful fusion methodology, especially for the fusion of heterogeneous information sources. If fusion problems are handled under consideration of the full expressiveness and the full range of methods provided by Bayesian statistics, the Bayesian fusion methodology possesses an impressive wide range of applications. We discuss this by having a closer look at selected aspects of Bayesian modeling. Thereby, also parallels to other methods used for information fusion will be drawn. With regard to the practical tractability of Bayesian fusion problems, selected approaches to deal with its potentially high complexity are discussed.
贝叶斯融合:建模与应用
贝叶斯统计提供了一种强大的融合方法,尤其适用于异构信息源的融合。如果考虑到贝叶斯统计所提供的全表达性和全范围的方法来处理融合问题,贝叶斯融合方法具有令人印象深刻的广泛应用范围。我们通过仔细研究贝叶斯建模的选定方面来讨论这个问题。因此,还将绘制与用于信息融合的其他方法的相似之处。考虑到贝叶斯融合问题的实际可处理性,讨论了处理其潜在的高复杂性的选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信