Occluded Image Recognition with Extended Nonnegative Matrix Factorization

Viet-Hang Duong, Manh-Quan Bui, Jia-Ching Wang
{"title":"Occluded Image Recognition with Extended Nonnegative Matrix Factorization","authors":"Viet-Hang Duong, Manh-Quan Bui, Jia-Ching Wang","doi":"10.1109/NICS.2018.8606869","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of recognizing face and facial expression under occlusion situations. We have introduced an extension of nonnegative matrix factorization called angle and graph constrained nonnegative matrix factorization (AGNRIF). The proposed model is developed in term of minimizing angle of basic cone and preserving the geometrical structure of the projective data. The experimental results in the context of occluded images demonstrate that the technique of enforcing constraints on both basic and encoding matrices works well and the AGNMF method shows superior performance to other conventional NRIF approaches.","PeriodicalId":137666,"journal":{"name":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2018.8606869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the challenge of recognizing face and facial expression under occlusion situations. We have introduced an extension of nonnegative matrix factorization called angle and graph constrained nonnegative matrix factorization (AGNRIF). The proposed model is developed in term of minimizing angle of basic cone and preserving the geometrical structure of the projective data. The experimental results in the context of occluded images demonstrate that the technique of enforcing constraints on both basic and encoding matrices works well and the AGNMF method shows superior performance to other conventional NRIF approaches.
基于扩展非负矩阵分解的遮挡图像识别
本文解决了在遮挡情况下人脸和面部表情识别的挑战。引入了非负矩阵分解的一个扩展,称为角与图约束非负矩阵分解(AGNRIF)。该模型从最小基本锥角和保持投影数据几何结构的角度出发。在遮挡图像环境下的实验结果表明,AGNMF方法对基本矩阵和编码矩阵都施加约束的技术效果良好,并且与其他传统的NRIF方法相比,AGNMF方法表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信