Coupling control in the few-electron regime of quantum dot arrays using 2-metal gate levels in CMOS technology

B. C. Paz, Victor El-Homsy, D. Niegemann, B. Klemt, E. Chanrion, V. Thiney, B. Jadot, P. Mortemousque, B. Bertrand, T. Bedecarrats, H. Niebojewski, F. Perruchot, S. D. Franceschi, M. Vinet, M. Urdampilleta, T. Meunier
{"title":"Coupling control in the few-electron regime of quantum dot arrays using 2-metal gate levels in CMOS technology","authors":"B. C. Paz, Victor El-Homsy, D. Niegemann, B. Klemt, E. Chanrion, V. Thiney, B. Jadot, P. Mortemousque, B. Bertrand, T. Bedecarrats, H. Niebojewski, F. Perruchot, S. D. Franceschi, M. Vinet, M. Urdampilleta, T. Meunier","doi":"10.1109/ESSCIRC55480.2022.9911381","DOIUrl":null,"url":null,"abstract":"Scalability is one of the biggest advantages of silicon spin qubits over other platforms, making them very promising candidates in the quest for quantum computing. In this work we approach the regime of interest for large-scale qubit integration, showing that we can deliver high electrostatic coupling control and individual tunability over an array of quantum dots (QDs). To do this we use FDSOI devices fabricated with 2-metal gate levels in an industry-compatible CMOS process. We operate them at 100mK, and in a dot-configuration where large control on tunnel barriers is leveraged. In the many-electron regime, we observe the transition of quantum dot array from single- to triple-dot configurations. Moreover, in the few-electron regime, we demonstrate the effective and in-situ modulation of the tunnel coupling between two adjacent QDs.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"379 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scalability is one of the biggest advantages of silicon spin qubits over other platforms, making them very promising candidates in the quest for quantum computing. In this work we approach the regime of interest for large-scale qubit integration, showing that we can deliver high electrostatic coupling control and individual tunability over an array of quantum dots (QDs). To do this we use FDSOI devices fabricated with 2-metal gate levels in an industry-compatible CMOS process. We operate them at 100mK, and in a dot-configuration where large control on tunnel barriers is leveraged. In the many-electron regime, we observe the transition of quantum dot array from single- to triple-dot configurations. Moreover, in the few-electron regime, we demonstrate the effective and in-situ modulation of the tunnel coupling between two adjacent QDs.
利用CMOS技术中的2金属栅极电平耦合控制量子点阵列的少电子态
可扩展性是硅自旋量子比特相对于其他平台的最大优势之一,这使得它们在量子计算的探索中非常有前途。在这项工作中,我们接近大规模量子比特集成的兴趣机制,表明我们可以在量子点阵列(QDs)上提供高静电耦合控制和个体可调性。为此,我们在工业兼容的CMOS工艺中使用具有2金属栅极电平的FDSOI器件。我们以100mK的速度运行它们,并在点配置中对隧道障碍进行大规模控制。在多电子态下,我们观察到量子点阵列从单点结构到三点结构的转变。此外,在少电子状态下,我们证明了两个相邻量子点之间隧道耦合的有效和原位调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信