Thermal Barrier Coating Applied to the Structural Shroud of an Inside-Out Ceramic Turbine

P. K. Dubois, A. Gauvin-Verville, B. Picard, J. Plante, M. Picard
{"title":"Thermal Barrier Coating Applied to the Structural Shroud of an Inside-Out Ceramic Turbine","authors":"P. K. Dubois, A. Gauvin-Verville, B. Picard, J. Plante, M. Picard","doi":"10.1115/gt2021-58972","DOIUrl":null,"url":null,"abstract":"\n Recuperated, high-temperature microturbines (< 1 MW) could be a key enabler for hybrid powertrains of tomorrow’s small aircraft. To achieve competitive thermal efficiencies, turbine inlet temperature (TIT) must increase to 1550 K, well beyond conventional metallic microturbine limits. This calls for high-temperature refractory ceramics, which call for a new ceramic-specific, microturbine design like the Inside-Out Ceramic Turbine (ICT). This study focuses on the applicability of a refractory thermal barrier coating (TBC) to the internal surface of the ICT cooling ring. By cutting the heat transfer from the main flow to the structural rim-rotor, the use of a refractory TBC coating in an ICT enables higher TIT and lower cooling air mass flow.\n A preliminary experimental assessment is done at room temperature on 1 mm-thick coatings of 8% yttria-stabilized zirconia (8YSZ), air plasma sprayed (APS) TBC, applied to Inconel 718 and Ti64 test coupons. Results show that the strongly orthotropic behaviour of the tested TBC fits perfectly with the deformation mechanics of the ICT configuration under load. First, large in-plane strain tolerance allows the large tangential deformation imposed by the structural shroud under centrifugal loading. Second, high out-of-plane stiffness and compressive resistance combine to support extreme compressive loads with no apparent damage to the TBC even at more than 3 times blade indentation average loading. An experimental demonstration on a small-scale prototype shows a reduction of 40% in cooling flow in a, 8-minute ICT test, with no damage to the TBC, proving the effectiveness and potential of the proposed TBC design.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recuperated, high-temperature microturbines (< 1 MW) could be a key enabler for hybrid powertrains of tomorrow’s small aircraft. To achieve competitive thermal efficiencies, turbine inlet temperature (TIT) must increase to 1550 K, well beyond conventional metallic microturbine limits. This calls for high-temperature refractory ceramics, which call for a new ceramic-specific, microturbine design like the Inside-Out Ceramic Turbine (ICT). This study focuses on the applicability of a refractory thermal barrier coating (TBC) to the internal surface of the ICT cooling ring. By cutting the heat transfer from the main flow to the structural rim-rotor, the use of a refractory TBC coating in an ICT enables higher TIT and lower cooling air mass flow. A preliminary experimental assessment is done at room temperature on 1 mm-thick coatings of 8% yttria-stabilized zirconia (8YSZ), air plasma sprayed (APS) TBC, applied to Inconel 718 and Ti64 test coupons. Results show that the strongly orthotropic behaviour of the tested TBC fits perfectly with the deformation mechanics of the ICT configuration under load. First, large in-plane strain tolerance allows the large tangential deformation imposed by the structural shroud under centrifugal loading. Second, high out-of-plane stiffness and compressive resistance combine to support extreme compressive loads with no apparent damage to the TBC even at more than 3 times blade indentation average loading. An experimental demonstration on a small-scale prototype shows a reduction of 40% in cooling flow in a, 8-minute ICT test, with no damage to the TBC, proving the effectiveness and potential of the proposed TBC design.
热障涂层在陶瓷涡轮结构罩上的应用
可再生的高温微型涡轮机(小于1兆瓦)可能成为未来小型飞机混合动力系统的关键推动因素。为了达到有竞争力的热效率,涡轮入口温度(TIT)必须提高到1550 K,远远超过传统金属微型涡轮的限制。这就需要高温耐火陶瓷,这就需要一种新的陶瓷专用微型涡轮设计,如内外陶瓷涡轮(ICT)。本研究的重点是耐火热障涂层(TBC)在ICT冷却环内表面的适用性。通过切断从主流到结构轮辋转子的热量传递,在ICT中使用耐火TBC涂层可以实现更高的TIT和更低的冷却空气质量流量。在室温条件下,对应用于Inconel 718和Ti64试样上的8%氧化钇稳定氧化锆(8YSZ) 1 mm厚空气等离子喷涂(APS) TBC涂层进行了初步实验评价。结果表明,测试TBC的强正交各向异性行为与载荷作用下ICT结构的变形力学完全吻合。首先,大的面内应变容差允许结构罩在离心载荷下施加大的切向变形。其次,高面外刚度和抗压性结合起来支持极端压缩载荷,即使在叶片压痕平均载荷的3倍以上,也不会对TBC造成明显损伤。在一个小型原型上的实验演示表明,在8分钟的ICT测试中,冷却流量减少了40%,并且没有损坏TBC,证明了所提出的TBC设计的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信