A. Utsumi, T. Hino, J. Matsuda, Takashi Tasoda, M. Yoneda, M. Katsumura, T. Yano, T. Araki
{"title":"Effect of laser power on clad metal in laser-TIG combined metal cladding","authors":"A. Utsumi, T. Hino, J. Matsuda, Takashi Tasoda, M. Yoneda, M. Katsumura, T. Yano, T. Araki","doi":"10.1117/12.497595","DOIUrl":null,"url":null,"abstract":"TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.","PeriodicalId":159280,"journal":{"name":"International Congress on Laser Advanced Materials Processing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Laser Advanced Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.497595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.