Image Segmentation on Embedded Systems via Superpixel Convolutional Networks

S. Mentasti, M. Matteucci
{"title":"Image Segmentation on Embedded Systems via Superpixel Convolutional Networks","authors":"S. Mentasti, M. Matteucci","doi":"10.1109/ECMR.2019.8870967","DOIUrl":null,"url":null,"abstract":"In this paper we describe a lightweight framework for fast image segmentation on embedded systems, based on superpixels, which leverages on convolutional and graph-convolutional neural networks. In particular, we analyzed different superpixel representation looking for the best tradeoff between the efficiency of the system and richness of the description. Similarly, we analyzed different network sizes, balancing the number of filters used and the prediction accuracy. We also compared two different convolutional architecture, one based on the classical encoder-decoder paradigm and one based on graphs, to guarantee a most accurate representation of the image structure. The architecture was tested on the KITTI dataset using an embedded system with CUDA capabilities.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we describe a lightweight framework for fast image segmentation on embedded systems, based on superpixels, which leverages on convolutional and graph-convolutional neural networks. In particular, we analyzed different superpixel representation looking for the best tradeoff between the efficiency of the system and richness of the description. Similarly, we analyzed different network sizes, balancing the number of filters used and the prediction accuracy. We also compared two different convolutional architecture, one based on the classical encoder-decoder paradigm and one based on graphs, to guarantee a most accurate representation of the image structure. The architecture was tested on the KITTI dataset using an embedded system with CUDA capabilities.
基于超像素卷积网络的嵌入式系统图像分割
在本文中,我们描述了一个基于超像素的嵌入式系统快速图像分割的轻量级框架,它利用了卷积和图卷积神经网络。特别是,我们分析了不同的超像素表示,寻找系统效率和描述丰富性之间的最佳权衡。同样,我们分析了不同的网络大小,平衡使用的过滤器数量和预测精度。我们还比较了两种不同的卷积架构,一种基于经典的编码器-解码器范式,另一种基于图,以保证最准确地表示图像结构。该架构使用具有CUDA功能的嵌入式系统在KITTI数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信