Image processing using ICA: a new perspective

R. Martín-Clemente, S. Hornillo-Mellado
{"title":"Image processing using ICA: a new perspective","authors":"R. Martín-Clemente, S. Hornillo-Mellado","doi":"10.1109/MELCON.2006.1653148","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) provides a sparse representation of natural images in terms of a set of oriented bases. So far, the interest on this result lay on its apparent connection to the neural processing of the mammalian primary visual cortex. In this paper we provide an analysis from a formal (not physiological) point of view. We show that ICA of a natural image is equivalent to filtering the image using a high-pass filter, followed by a sampling. This result determines, on the one hand, the sparse distribution of the independent components and, on the other hand, that the image bases resemble \"edges\" of the original image. Some experiments are included to illustrate the theoretical conclusions","PeriodicalId":299928,"journal":{"name":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2006.1653148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Independent component analysis (ICA) provides a sparse representation of natural images in terms of a set of oriented bases. So far, the interest on this result lay on its apparent connection to the neural processing of the mammalian primary visual cortex. In this paper we provide an analysis from a formal (not physiological) point of view. We show that ICA of a natural image is equivalent to filtering the image using a high-pass filter, followed by a sampling. This result determines, on the one hand, the sparse distribution of the independent components and, on the other hand, that the image bases resemble "edges" of the original image. Some experiments are included to illustrate the theoretical conclusions
基于ICA的图像处理:一个新的视角
独立分量分析(ICA)根据一组定向基提供自然图像的稀疏表示。到目前为止,对这一结果的兴趣在于它与哺乳动物初级视觉皮层的神经处理的明显联系。在本文中,我们从形式化(而非生理学)的角度进行了分析。我们证明了自然图像的ICA相当于使用高通滤波器对图像进行滤波,然后进行采样。这一结果一方面决定了独立分量的稀疏分布,另一方面决定了图像基底类似于原始图像的“边缘”。文中还包括一些实验来说明理论结论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信