Assessing Machine learning-based approaches for Silica concentration estimation in Iron Froth flotation

Mauricio Montanares, Sebastián Guajardo, Iván Aguilera, Nathalie Risso
{"title":"Assessing Machine learning-based approaches for Silica concentration estimation in Iron Froth flotation","authors":"Mauricio Montanares, Sebastián Guajardo, Iván Aguilera, Nathalie Risso","doi":"10.1109/ICAACCA51523.2021.9465297","DOIUrl":null,"url":null,"abstract":"In the mining industry, specifically in the flotation process, there is a challenge associated to noninvasive, real-time contaminant and impurities estimation. Achieving predictions on contaminant levels has a high impact on quality insurance and it can help technicians and engineers to make adjustments in advance to improve the quality of the final product, and thus profits. In this paper, exploratory research is performed on the problem of silica concentrate estimation for iron ore froth flotation using machine learning techniques, with the goal to identify algorithms that may be suitable for industry soft sensor development. For this purpose, a public, real process dataset is used and three different machine learning techniques are implemented: Random Forest (RF), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The techniques were implemented, tested and compared in terms of their error percentage, mean absolute error, mean square error, and root mean square error. Obtained results show acceptable performance for LTSM and GRU implementations, being LSTM network the out-performer with errors below 9%.","PeriodicalId":328922,"journal":{"name":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAACCA51523.2021.9465297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the mining industry, specifically in the flotation process, there is a challenge associated to noninvasive, real-time contaminant and impurities estimation. Achieving predictions on contaminant levels has a high impact on quality insurance and it can help technicians and engineers to make adjustments in advance to improve the quality of the final product, and thus profits. In this paper, exploratory research is performed on the problem of silica concentrate estimation for iron ore froth flotation using machine learning techniques, with the goal to identify algorithms that may be suitable for industry soft sensor development. For this purpose, a public, real process dataset is used and three different machine learning techniques are implemented: Random Forest (RF), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The techniques were implemented, tested and compared in terms of their error percentage, mean absolute error, mean square error, and root mean square error. Obtained results show acceptable performance for LTSM and GRU implementations, being LSTM network the out-performer with errors below 9%.
基于机器学习的铁泡沫浮选二氧化硅浓度估算方法的评估
在采矿工业中,特别是在浮选过程中,存在着与非侵入性、实时污染物和杂质估计相关的挑战。实现对污染物水平的预测对质量保险有很大的影响,它可以帮助技术人员和工程师提前做出调整,以提高最终产品的质量,从而提高利润。本文利用机器学习技术对铁矿泡沫浮选中二氧化硅精矿估算问题进行了探索性研究,目的是确定可能适用于工业软传感器开发的算法。为此,使用了一个公共的、真实的过程数据集,并实现了三种不同的机器学习技术:随机森林(RF)、长短期记忆(LSTM)和门控循环单元(GRU)。对这些技术进行了实施、测试和比较,包括误差百分比、平均绝对误差、均方误差和均方根误差。获得的结果显示LTSM和GRU实现的性能可以接受,其中LSTM网络的性能优于LSTM网络,误差低于9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信