On distribution function of free and bound electrons in equilibrium Coulomb system

S. Maiorov, А.L. Khomkin
{"title":"On distribution function of free and bound electrons in equilibrium Coulomb system","authors":"S. Maiorov, А.L. Khomkin","doi":"10.26577/phst-2019-1-p1","DOIUrl":null,"url":null,"abstract":"In classical thermodynamics, the velocity distribution function of particles is always Maxwell distributionfor any density. This is due to the fact that the dependences on the pulses and coordinates in theexpression for the total energy are separated. Integration over coordinates leads to the appearance of aconfiguration integral, and the remaining part is divided into the product of Maxwell distributionfunctions. In the case of formation of bound states (molecules) in an atomic gas, the full phase space ofthe relative motion of two particles is divided into two parts. The first corresponds to negative energies ofrelative motion (molecular component), and the second to positive (free atoms). The velocity distributionfunction remains Maxwellian, if we ignore the fact of separation of the phase space. It can be assumedthat for free atoms the velocity (kinetic energies) distribution may be different from Maxwell. Forplasmas, the assumption of the non-Maxwellian velocity distribution function of free electrons was made.The influence of the non-Maxwell electron distribution function on the recombination coefficient isestimated.","PeriodicalId":321102,"journal":{"name":"Physical Sciences and Technology","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/phst-2019-1-p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In classical thermodynamics, the velocity distribution function of particles is always Maxwell distributionfor any density. This is due to the fact that the dependences on the pulses and coordinates in theexpression for the total energy are separated. Integration over coordinates leads to the appearance of aconfiguration integral, and the remaining part is divided into the product of Maxwell distributionfunctions. In the case of formation of bound states (molecules) in an atomic gas, the full phase space ofthe relative motion of two particles is divided into two parts. The first corresponds to negative energies ofrelative motion (molecular component), and the second to positive (free atoms). The velocity distributionfunction remains Maxwellian, if we ignore the fact of separation of the phase space. It can be assumedthat for free atoms the velocity (kinetic energies) distribution may be different from Maxwell. Forplasmas, the assumption of the non-Maxwellian velocity distribution function of free electrons was made.The influence of the non-Maxwell electron distribution function on the recombination coefficient isestimated.
平衡库仑系统中自由电子和束缚电子的分布函数
在经典热力学中,粒子的速度分布函数对任何密度都是麦克斯韦分布。这是由于总能量表达式中对脉冲和坐标的依赖是分离的。在坐标上的积分导致构型积分的出现,剩下的部分被划分为麦克斯韦分布函数的乘积。在原子气体中形成束缚态(分子)的情况下,两个粒子相对运动的整个相空间被分为两部分。第一个对应于负的相对运动能量(分子成分),第二个对应于正的(自由原子)。如果我们忽略相空间分离的事实,速度分布函数仍然是麦克斯韦式的。可以假定,自由原子的速度(动能)分布可能与麦克斯韦不同。对于等离子体,提出了自由电子的非麦克斯韦速度分布函数的假设。估计了非麦克斯韦电子分布函数对复合系数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信