Body Bias Control on a CGRA based on Convex Optimization

Takuya Kojima, Hayate Okuhara, Masaaki Kondo, H. Amano
{"title":"Body Bias Control on a CGRA based on Convex Optimization","authors":"Takuya Kojima, Hayate Okuhara, Masaaki Kondo, H. Amano","doi":"10.1109/coolchips54332.2022.9772708","DOIUrl":null,"url":null,"abstract":"Body biasing is one of the critical techniques to realize more energy-efficient computing with reconfigurable devices, such as Coarse-Grained Reconfigurable Architectures (CGRAs). Its benefit depends on the control granularity, whereas fine-grained control makes it challenging to find the best body bias voltage for each domain due to the complexity of the optimization problem. This work reformulates the optimization problem and introduces continuous relaxation to solve it faster than previous work. Experimental result shows the proposed method can solve the problem within 0.5 sec for all benchmarks in any conditions and demonstrates up to 5.65x speed-up compared to the previous method with negligible loss of accuracy.","PeriodicalId":266152,"journal":{"name":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coolchips54332.2022.9772708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Body biasing is one of the critical techniques to realize more energy-efficient computing with reconfigurable devices, such as Coarse-Grained Reconfigurable Architectures (CGRAs). Its benefit depends on the control granularity, whereas fine-grained control makes it challenging to find the best body bias voltage for each domain due to the complexity of the optimization problem. This work reformulates the optimization problem and introduces continuous relaxation to solve it faster than previous work. Experimental result shows the proposed method can solve the problem within 0.5 sec for all benchmarks in any conditions and demonstrates up to 5.65x speed-up compared to the previous method with negligible loss of accuracy.
基于凸优化的CGRA车身偏置控制
体偏置是利用粗粒度可重构结构(CGRAs)等可重构器件实现更节能计算的关键技术之一。它的好处取决于控制粒度,而细粒度控制由于优化问题的复杂性,使得寻找每个域的最佳体偏置电压具有挑战性。这项工作重新制定了优化问题,并引入了连续松弛,以比以前的工作更快地解决问题。实验结果表明,在任何条件下,该方法都能在0.5秒内解决所有基准测试问题,与之前的方法相比,速度提高了5.65倍,精度损失可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信