Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine Untuk Klasifikasi Jenis Buah dan sayuran

Aditya Dwi Putro, Henri Tantyoko
{"title":"Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine Untuk Klasifikasi Jenis Buah dan sayuran","authors":"Aditya Dwi Putro, Henri Tantyoko","doi":"10.35746/jtim.v5i2.335","DOIUrl":null,"url":null,"abstract":"Arsitektur deep learning VGG16 terbukti efektif dalam hal melakukan klasifikasi citra pada dataset ImageNet, akan tetapi memiliki keterbatasan dalam jumlah parameter sangat banyak dan potensi overfitting pada dataset kecil. SVM memiliki kelebihan dalam hal menangani masalah overfitting pada dataset yang relatif kecil, sementara VGG16 memiliki keunggulan dalam mengekstraksi fitur yang berkualitas dari citra dengan performa yang sangat baik. SVM juga dapat membantu memperbaiki kinerja klasifikasi pada VGG16 dengan meminimalkan risiko overfitting dan meningkatkan akurasi klasifikasi pada dataset yang relatif kecil. Oleh karena itu, penulis memilih untuk hybrid algoritma VGG16Net Dengan Support Vector Machine Untuk Klasifikasi Jenis buah dan sayuran, yang nantinya arsitektur VGG16 digunakan untuk ekstraksi fitur dari citra dan fitur-fitur tersebut dijadikan input untuk SVM. Keputusan menggunakan VGG16 digabungkan dengan SVM adalah untuk meningkatkan akurasi klasifikasi dataset citra buah dan sayuran, Namun, penggunaan SVM membutuhkan pemilihan parameter yang tepat dan teknik prapemrosesan data yang tepat untuk mencapai hasil yang baik. Dan dalam penelitian ini penulis berhasil mengklasifikasikan citra buah dan sayuran, akurasi sebelum hybrid svm mendapatkan 94.52% training accuracy dan testing (validation) accuracy sebesar 87.85%. dan hasil loss mendapat training loss sebesar 0.58 dan testing loss accuracy sebesar 12.5%. Setelah dilakukan hybrid vgg16 dengan svm didapatkan training accuracy sebesar 99.87 % dan testing (validation) accuracy sebesar 91.76 %. Untuk hasil loss mendapat training loss sebesar 0.13 dan testing loss accuracy sebesar 8.24%. Oleh karena itu, arsitektur CNN VGG-16Net digabungkan dengan SVM dapat menghasilkan model klasifikasi yang baik, terutama pada dataset yang relatif kecil dan dapat menjadi pilihan yang sesuai dalam klasifikasi citra.","PeriodicalId":399621,"journal":{"name":"JTIM : Jurnal Teknologi Informasi dan Multimedia","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTIM : Jurnal Teknologi Informasi dan Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35746/jtim.v5i2.335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arsitektur deep learning VGG16 terbukti efektif dalam hal melakukan klasifikasi citra pada dataset ImageNet, akan tetapi memiliki keterbatasan dalam jumlah parameter sangat banyak dan potensi overfitting pada dataset kecil. SVM memiliki kelebihan dalam hal menangani masalah overfitting pada dataset yang relatif kecil, sementara VGG16 memiliki keunggulan dalam mengekstraksi fitur yang berkualitas dari citra dengan performa yang sangat baik. SVM juga dapat membantu memperbaiki kinerja klasifikasi pada VGG16 dengan meminimalkan risiko overfitting dan meningkatkan akurasi klasifikasi pada dataset yang relatif kecil. Oleh karena itu, penulis memilih untuk hybrid algoritma VGG16Net Dengan Support Vector Machine Untuk Klasifikasi Jenis buah dan sayuran, yang nantinya arsitektur VGG16 digunakan untuk ekstraksi fitur dari citra dan fitur-fitur tersebut dijadikan input untuk SVM. Keputusan menggunakan VGG16 digabungkan dengan SVM adalah untuk meningkatkan akurasi klasifikasi dataset citra buah dan sayuran, Namun, penggunaan SVM membutuhkan pemilihan parameter yang tepat dan teknik prapemrosesan data yang tepat untuk mencapai hasil yang baik. Dan dalam penelitian ini penulis berhasil mengklasifikasikan citra buah dan sayuran, akurasi sebelum hybrid svm mendapatkan 94.52% training accuracy dan testing (validation) accuracy sebesar 87.85%. dan hasil loss mendapat training loss sebesar 0.58 dan testing loss accuracy sebesar 12.5%. Setelah dilakukan hybrid vgg16 dengan svm didapatkan training accuracy sebesar 99.87 % dan testing (validation) accuracy sebesar 91.76 %. Untuk hasil loss mendapat training loss sebesar 0.13 dan testing loss accuracy sebesar 8.24%. Oleh karena itu, arsitektur CNN VGG-16Net digabungkan dengan SVM dapat menghasilkan model klasifikasi yang baik, terutama pada dataset yang relatif kecil dan dapat menjadi pilihan yang sesuai dalam klasifikasi citra.
深学习架构VGG16被证明是有效的对数据ImageNet进行图像分类,但参数数量的限制和对小数据集的潜在重叠。SVM在处理相对较小的数据集上的冗余问题方面有一个优势,而VGG16则擅长从高性能的图像中提取高质量的特性。SVM还可以通过减少过度匹配的风险和增加相对较小的数据集的分类准确性来帮助提高VGG16的分类性能。因此,作者选择了带有向量机的混合算法VGG16Net来分类水果和蔬菜类型,从而利用VGG16架构将其特征和特性输入SVM。使用VGG16与SVM相结合的决定是为了增加水果和蔬菜图像的数据分类准确度,然而,使用SVM需要选择适当的参数和适当的数据准备技术才能取得良好的结果。在这项研究中,作者成功地对水果和蔬菜进行了准确的分类,直到svm杂交品种达到94.52%的准确准确达到87.85%。失序达到0.58,失序达到12.5%。在svm混合vgg16之后,他获得了99。87的培训准确,准确达到91.76 %。损失达到0.13分,计算损失达到8.24%。因此,CNN的VGG-16Net架构与SVM合并可以产生一个很好的分类模型,特别是在一个相对较小的数据集上,可以成为图像分类中的一个合适的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信