An Adaptive Wi-Fi Indoor Localization Scheme using Deep Learning

Chih-Shun Hsu, Y. Chen, Tong-Ying Juang, Yi-Ting Wu
{"title":"An Adaptive Wi-Fi Indoor Localization Scheme using Deep Learning","authors":"Chih-Shun Hsu, Y. Chen, Tong-Ying Juang, Yi-Ting Wu","doi":"10.1109/APCAP.2018.8538191","DOIUrl":null,"url":null,"abstract":"Indoor localization is an important issue for many indoor applications. Many deep learning-based indoor localization schemes have been proposed. However, these existing schemes cannot adjust according to different environment. To improve the existing schemes, a novel indoor localization scheme, which can adaptively adopt the proper fingerprint database according to the collected signals, is proposed in this paper. The experimental results show that the proposed scheme can reduce the localization error.","PeriodicalId":198124,"journal":{"name":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP.2018.8538191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indoor localization is an important issue for many indoor applications. Many deep learning-based indoor localization schemes have been proposed. However, these existing schemes cannot adjust according to different environment. To improve the existing schemes, a novel indoor localization scheme, which can adaptively adopt the proper fingerprint database according to the collected signals, is proposed in this paper. The experimental results show that the proposed scheme can reduce the localization error.
基于深度学习的自适应Wi-Fi室内定位方案
室内定位是许多室内应用的一个重要问题。许多基于深度学习的室内定位方案已经被提出。然而,这些现有的方案不能根据不同的环境进行调整。为了改进现有的室内定位方案,本文提出了一种新的室内定位方案,该方案可以根据采集到的指纹信号自适应地选择合适的指纹库。实验结果表明,该方法能有效地减小定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信