Y. Sundarasaradula, T. Constandinou, A. Thanachayanont
{"title":"A 6-bit, two-step, successive approximation logarithmic ADC for biomedical applications","authors":"Y. Sundarasaradula, T. Constandinou, A. Thanachayanont","doi":"10.1109/ICECS.2016.7841123","DOIUrl":null,"url":null,"abstract":"This paper presents the design and realization of a novel low-power 6-bit successive approximation logarithmic ADC for biomedical applications. A two-step successive approximation method is proposed to obtain a piecewise-linear approximation of the desired logarithmic transfer function. The proposed ADC has been designed and simulated using process parameters from a standard 0.35 μm 2P4M CMOS technology with a single 1.8 V power supply voltage. Simulation results show that, at a sampling rate of 25 kS/s, the proposed ADC consumes 4.36 μW to 14.6 μW (proportional to input amplitudes). The proposed ADC achieves 18.6 pJ/conversion-step, maximum INL of 0.45 LSB, an ENOB of 4.97-bits, and SNDR of 31.7 dB with 1 V full-scale input range.","PeriodicalId":205556,"journal":{"name":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2016.7841123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents the design and realization of a novel low-power 6-bit successive approximation logarithmic ADC for biomedical applications. A two-step successive approximation method is proposed to obtain a piecewise-linear approximation of the desired logarithmic transfer function. The proposed ADC has been designed and simulated using process parameters from a standard 0.35 μm 2P4M CMOS technology with a single 1.8 V power supply voltage. Simulation results show that, at a sampling rate of 25 kS/s, the proposed ADC consumes 4.36 μW to 14.6 μW (proportional to input amplitudes). The proposed ADC achieves 18.6 pJ/conversion-step, maximum INL of 0.45 LSB, an ENOB of 4.97-bits, and SNDR of 31.7 dB with 1 V full-scale input range.