Towards ADC-Less Compute-In-Memory Accelerators for Energy Efficient Deep Learning

Utkarsh Saxena, I. Chakraborty, K. Roy
{"title":"Towards ADC-Less Compute-In-Memory Accelerators for Energy Efficient Deep Learning","authors":"Utkarsh Saxena, I. Chakraborty, K. Roy","doi":"10.23919/DATE54114.2022.9774573","DOIUrl":null,"url":null,"abstract":"Compute-in-Memory (CiM) hardware has shown great potential in accelerating Deep Neural Networks (DNNs). However, most CiM accelerators for matrix vector multiplication rely on costly analog to digital converters (ADCs) which becomes a bottleneck in achieving high energy efficiency. In this work, we propose a hardware-software co-design approach to reduce the aforementioned ADC costs through partial-sum quantization. Specifically, we replace ADCs with 1-bit sense amplifiers and develop a quantization aware training methodology to compensate for the loss in representation ability. We show that the proposed ADC-less DNN model achieves 1.1x-9.6x reduction in energy consumption while maintaining accuracy within 1% of the DNN model without partial-sum quantization.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"616 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Compute-in-Memory (CiM) hardware has shown great potential in accelerating Deep Neural Networks (DNNs). However, most CiM accelerators for matrix vector multiplication rely on costly analog to digital converters (ADCs) which becomes a bottleneck in achieving high energy efficiency. In this work, we propose a hardware-software co-design approach to reduce the aforementioned ADC costs through partial-sum quantization. Specifically, we replace ADCs with 1-bit sense amplifiers and develop a quantization aware training methodology to compensate for the loss in representation ability. We show that the proposed ADC-less DNN model achieves 1.1x-9.6x reduction in energy consumption while maintaining accuracy within 1% of the DNN model without partial-sum quantization.
面向节能深度学习的无adc内存中计算加速器
内存计算(CiM)硬件在加速深度神经网络(dnn)方面显示出巨大的潜力。然而,大多数用于矩阵矢量乘法的CiM加速器依赖于昂贵的模数转换器(adc),这成为实现高能效的瓶颈。在这项工作中,我们提出了一种硬件软件协同设计方法,通过部分和量化来降低上述ADC成本。具体来说,我们用1位感觉放大器取代adc,并开发了一种量化感知训练方法来补偿表征能力的损失。我们表明,提出的无adc的DNN模型在没有部分和量化的情况下,能耗降低了1.1 -9.6倍,同时保持了DNN模型1%以内的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信