Prediction of Estimates' Accuracy for Linear Regression with a Small Sample Size

V. Fursov, A. Gavrilov, A. Kotov
{"title":"Prediction of Estimates' Accuracy for Linear Regression with a Small Sample Size","authors":"V. Fursov, A. Gavrilov, A. Kotov","doi":"10.1109/TSP.2018.8441385","DOIUrl":null,"url":null,"abstract":"We consider the problem of linear regression in the case of an extremely small sample size. It is difficult to obtain good estimates of model parameters and confidence interval in this case. We develop an approach based on the conformity estimation principle. Within this approach we form a set of subsystems with square matrixes and calculate a set of estimates for them. Then we choose a subsystem from initial system for which these estimates mutually the closest (function of mutual proximity is minimum). Then, we calculate a final estimate on this subsystem. We also used the mutual conformity function to predict the estimate's accuracy. Our approach is based on the assumption that there is a relationship between the estimation errors and values of the mutual conformity function. That is a new view on the problem of small sample size confidence intervals.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of linear regression in the case of an extremely small sample size. It is difficult to obtain good estimates of model parameters and confidence interval in this case. We develop an approach based on the conformity estimation principle. Within this approach we form a set of subsystems with square matrixes and calculate a set of estimates for them. Then we choose a subsystem from initial system for which these estimates mutually the closest (function of mutual proximity is minimum). Then, we calculate a final estimate on this subsystem. We also used the mutual conformity function to predict the estimate's accuracy. Our approach is based on the assumption that there is a relationship between the estimation errors and values of the mutual conformity function. That is a new view on the problem of small sample size confidence intervals.
小样本量线性回归估计精度的预测
我们考虑极小样本量情况下的线性回归问题。在这种情况下,很难获得模型参数和置信区间的良好估计。我们开发了一种基于一致性估计原理的方法。在这种方法中,我们用方阵形成一组子系统,并为它们计算一组估计。然后,我们从初始系统中选择一个这些估计相互最接近的子系统(相互接近的函数最小)。然后,对该子系统进行了最终的估算。我们还使用了相互符合函数来预测估计的精度。我们的方法是基于估计误差和相互整合函数的值之间存在关系的假设。这是对小样本量置信区间问题的一种新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信