Passivity characterization of grid-forming converters with fault-ride through capability

M. Beza, M. Bongiorno, Anant Narula
{"title":"Passivity characterization of grid-forming converters with fault-ride through capability","authors":"M. Beza, M. Bongiorno, Anant Narula","doi":"10.23919/epe21ecceeurope50061.2021.9570479","DOIUrl":null,"url":null,"abstract":"Due to the increase in the use of renewable energy sources (RES) and a corresponding reduction in the conventional energy generation systems, there is nowadays a demand from the power-electronic converters to provide grid-forming properties through proper control of the converter systems. This paper aims at evaluating the impact of various control loops of a grid-forming control strategy equipped with a fault-ride through capability on the passivity properties of the converter system. Through the analysis of the frequency-dependent input admittance of the converter, the main factors affecting the passivity property are identified. A simplified analytical model has been derived in order to propose possible control modifications to enhance system’s passivity at various frequencies of interest and the findings are verified through detailed time-domain simulations and experiments.","PeriodicalId":236701,"journal":{"name":"2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/epe21ecceeurope50061.2021.9570479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the increase in the use of renewable energy sources (RES) and a corresponding reduction in the conventional energy generation systems, there is nowadays a demand from the power-electronic converters to provide grid-forming properties through proper control of the converter systems. This paper aims at evaluating the impact of various control loops of a grid-forming control strategy equipped with a fault-ride through capability on the passivity properties of the converter system. Through the analysis of the frequency-dependent input admittance of the converter, the main factors affecting the passivity property are identified. A simplified analytical model has been derived in order to propose possible control modifications to enhance system’s passivity at various frequencies of interest and the findings are verified through detailed time-domain simulations and experiments.
具有穿越故障能力的并网变流器无源特性
由于可再生能源(RES)使用的增加和传统能源发电系统的相应减少,目前电力电子变流器要求通过对变流器系统的适当控制来提供并网性能。本文旨在评估具有故障穿越能力的成网控制策略的各种控制回路对变流器系统无源特性的影响。通过对变换器频率相关输入导纳的分析,确定了影响变换器无源特性的主要因素。为了提出可能的控制修改以提高系统在不同频率下的无源性,推导了一个简化的分析模型,并通过详细的时域模拟和实验验证了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信