Fabrication and characterization of polysilicon for DNA detection

Y. Ang, M. Arshad, K. L. Foo, Md N. M. Nuzaihan, A. H. Azman, U. Hashim
{"title":"Fabrication and characterization of polysilicon for DNA detection","authors":"Y. Ang, M. Arshad, K. L. Foo, Md N. M. Nuzaihan, A. H. Azman, U. Hashim","doi":"10.1109/SMELEC.2014.6920883","DOIUrl":null,"url":null,"abstract":"We present the fabrication and electrical characterization of polysilicon and their properties with application in biomolecule sensors for DNA detection. Conventional photolithography technique was used to fabricate the DNA detection structure for two different wafer substrate i.e. N- and P-type. The fabrication processes involve of deposition, etching and oxidation to achieve the final structure. Surface modification, immobilization and hybridization were executed prior to electrical characterization by using cyclic voltammetry. It was observed that the modified surface with APTES achieved the highest current for both p- and n-type wafer with changes from 0.52 μA to 3.32 μA and from 0.57 μA to 2.52 μA respectively. Moreover, redox current of hybridization is observed approximately 22 % and 10 % larger than immobilized electrode for p- and n-type wafer.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the fabrication and electrical characterization of polysilicon and their properties with application in biomolecule sensors for DNA detection. Conventional photolithography technique was used to fabricate the DNA detection structure for two different wafer substrate i.e. N- and P-type. The fabrication processes involve of deposition, etching and oxidation to achieve the final structure. Surface modification, immobilization and hybridization were executed prior to electrical characterization by using cyclic voltammetry. It was observed that the modified surface with APTES achieved the highest current for both p- and n-type wafer with changes from 0.52 μA to 3.32 μA and from 0.57 μA to 2.52 μA respectively. Moreover, redox current of hybridization is observed approximately 22 % and 10 % larger than immobilized electrode for p- and n-type wafer.
DNA检测用多晶硅的制备与表征
本文介绍了多晶硅的制备、电学特性及其在DNA检测生物分子传感器中的应用。采用传统光刻技术制备了N型和p型两种不同衬底的DNA检测结构。制造过程包括沉积、蚀刻和氧化以获得最终结构。在使用循环伏安法进行电学表征之前,进行了表面修饰、固定化和杂交。在p型和n型晶圆上,APTES修饰后的表面电流最高,分别为0.52 μA ~ 3.32 μA和0.57 μA ~ 2.52 μA。此外,对于p型和n型晶圆,杂交电极的氧化还原电流分别比固定电极大22%和10%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信