A version of Krust’s theorem for anisotropic minimal surfaces

B. Palmer
{"title":"A version of Krust’s theorem for anisotropic minimal surfaces","authors":"B. Palmer","doi":"10.1090/bproc/151","DOIUrl":null,"url":null,"abstract":"We generalize Krust’s theorem to an anisotropic setting by showing the following. If \n\n \n Σ\n \\Sigma\n \n\n is an anisotropic minimal surface in an axially symmetric normed linear space which is a graph over a convex domain contained in a plane orthogonal to the axis of symmetry, then its conjugate anisotropic minimal surface must also be a graph.\n\nWe also generalize a reflection principle of Lawson relating symmetries of an anisotropic minimal surface with symmetries of its conjugate surface.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize Krust’s theorem to an anisotropic setting by showing the following. If Σ \Sigma is an anisotropic minimal surface in an axially symmetric normed linear space which is a graph over a convex domain contained in a plane orthogonal to the axis of symmetry, then its conjugate anisotropic minimal surface must also be a graph. We also generalize a reflection principle of Lawson relating symmetries of an anisotropic minimal surface with symmetries of its conjugate surface.
各向异性最小曲面的Krust定理的一个版本
我们通过下面的例子将克罗斯特定理推广到各向异性的情况。如果Σ \Sigma是轴对称赋范线性空间中的各向异性最小曲面,它是一个包含在与对称轴正交的平面上的凸域上的图,那么它的共轭各向异性最小曲面也一定是一个图。我们还推广了Lawson反射原理,将各向异性最小曲面的对称性与其共轭曲面的对称性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信