Large-scale analog/RF performance modeling by statistical regression

Xin Li
{"title":"Large-scale analog/RF performance modeling by statistical regression","authors":"Xin Li","doi":"10.1109/ASICON.2009.5351329","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce several large-scale modeling techniques to analyze the high-dimensional, strongly-nonlinear performance variability observed in nanoscale manufacturing technologies. Our goal is to solve a large number of (e.g., 10<sup>4</sup>∼10<sup>6</sup>) model coefficients from a small set of (e.g., 10<sup>2</sup>∼10<sup>3</sup>) sampling points without over-fitting. This is facilitated by exploiting the underlying sparsity of model coefficients. Our circuit example designed in a commercial 65nm process demonstrates that the proposed techniques achieve 25× speedup compared with the traditional response surface modeling<sup>1</sup>.","PeriodicalId":446584,"journal":{"name":"2009 IEEE 8th International Conference on ASIC","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2009.5351329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce several large-scale modeling techniques to analyze the high-dimensional, strongly-nonlinear performance variability observed in nanoscale manufacturing technologies. Our goal is to solve a large number of (e.g., 104∼106) model coefficients from a small set of (e.g., 102∼103) sampling points without over-fitting. This is facilitated by exploiting the underlying sparsity of model coefficients. Our circuit example designed in a commercial 65nm process demonstrates that the proposed techniques achieve 25× speedup compared with the traditional response surface modeling1.
大规模模拟/射频性能统计回归建模
在本文中,我们引入了几种大规模建模技术来分析在纳米尺度制造技术中观察到的高维、强非线性性能变化。我们的目标是在不过度拟合的情况下,从一小组(例如102 ~ 103)采样点中求解大量(例如104 ~ 106)模型系数。这可以通过利用模型系数的潜在稀疏性来实现。我们在商用65nm工艺上设计的电路实例表明,与传统的响应面建模相比,所提出的技术实现了25倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信