{"title":"Estimation and bounding of energy consumption in burst-mode control circuits","authors":"P. Beerel, K. Yun, S. Nowick, Pei-Chuan Yeh","doi":"10.1109/ICCAD.1995.479881","DOIUrl":null,"url":null,"abstract":"This paper describes two techniques to quantify energy consumption of burst-mode asynchronous (clock-less) control circuits. The circuit specifications considered are extended burst-mode specifications, and the implementations are multi-level logic implementations whose outputs are guaranteed to be free of any voltage glitches (hazards). Both techniques use stochastic analysis to combine a small number of simulations in order to quantify average energy per external signal transition. The first technique uses N-valued simulation to derive mathematically tight upper and lower bounds of energy consumption. Using this technique we bound the effect of hazards under all possible operating conditions and environments for a given circuit. Additionally, to drive synthesis tools for low-power we propose a second technique that uses fixed-delay simulation to derive a realistic estimate of energy consumption within our derived upper and lower bounds. We demonstrate the feasibility of both these techniques on a variety of burst-mode control circuits used in an industrial-quality chip. Our preliminary results indicate that less than 5% of the power of typical multi-level burst-mode circuits can be attributed to hazards.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.479881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper describes two techniques to quantify energy consumption of burst-mode asynchronous (clock-less) control circuits. The circuit specifications considered are extended burst-mode specifications, and the implementations are multi-level logic implementations whose outputs are guaranteed to be free of any voltage glitches (hazards). Both techniques use stochastic analysis to combine a small number of simulations in order to quantify average energy per external signal transition. The first technique uses N-valued simulation to derive mathematically tight upper and lower bounds of energy consumption. Using this technique we bound the effect of hazards under all possible operating conditions and environments for a given circuit. Additionally, to drive synthesis tools for low-power we propose a second technique that uses fixed-delay simulation to derive a realistic estimate of energy consumption within our derived upper and lower bounds. We demonstrate the feasibility of both these techniques on a variety of burst-mode control circuits used in an industrial-quality chip. Our preliminary results indicate that less than 5% of the power of typical multi-level burst-mode circuits can be attributed to hazards.