State Estimation Accuracy of Tuned Least Measurement Rejected Estimator

Farhan Ahmad, M. S. Shahriar, I. Habiballah, A. Haider
{"title":"State Estimation Accuracy of Tuned Least Measurement Rejected Estimator","authors":"Farhan Ahmad, M. S. Shahriar, I. Habiballah, A. Haider","doi":"10.1109/ICEE.2018.8566701","DOIUrl":null,"url":null,"abstract":"Weighted Least Square (WLS) and Weighted Least Absolute Value (WLAV) estimators are most commonly employed in electric power industry. WLS fails in the presence of bad data and WLAV estimator has large computational burden. Least Measurement Rejected (LMR) is a robust estimator which can handle bad data efficiently and has lower computational burden. LMR estimator has an important tolerance parameter which is used to reject bad data during estimation process. In this paper, an iterative tuning approach for the tolerance parameter of LMR has been proposed. The accuracy and computational efficiency of the proposed approach have been compared with most commonly used WLS and WLAV estimators. The accuracy has been computed in terms of Cumulative Estimation Error (CEE) indicator for IEEE-30 and IEEE-118 bus systems.","PeriodicalId":182948,"journal":{"name":"2018 International Conference on Electrical Engineering (ICEE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE.2018.8566701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Weighted Least Square (WLS) and Weighted Least Absolute Value (WLAV) estimators are most commonly employed in electric power industry. WLS fails in the presence of bad data and WLAV estimator has large computational burden. Least Measurement Rejected (LMR) is a robust estimator which can handle bad data efficiently and has lower computational burden. LMR estimator has an important tolerance parameter which is used to reject bad data during estimation process. In this paper, an iterative tuning approach for the tolerance parameter of LMR has been proposed. The accuracy and computational efficiency of the proposed approach have been compared with most commonly used WLS and WLAV estimators. The accuracy has been computed in terms of Cumulative Estimation Error (CEE) indicator for IEEE-30 and IEEE-118 bus systems.
调谐最小测量拒绝估计器的状态估计精度
加权最小二乘(WLS)和加权最小绝对值(WLAV)估计是电力工业中最常用的估计方法。WLS在存在不良数据的情况下会失效,并且WLAV估计器的计算量很大。最小测量拒绝(LMR)是一种鲁棒估计方法,可以有效地处理不良数据,并且计算量小。LMR估计器有一个重要的容差参数,用来在估计过程中拒绝坏数据。本文提出了一种LMR公差参数的迭代整定方法。将该方法的精度和计算效率与最常用的WLS和WLAV估计方法进行了比较。根据IEEE-30和IEEE-118总线系统的累积估计误差(CEE)指标计算了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信