{"title":"Thermal management of a C4/CBGA interconnect technology for a high-performance RISC microprocessor: the Motorola PowerPC 620/sup TM/ microprocessor","authors":"G. Kroman","doi":"10.1109/ECTC.1996.517455","DOIUrl":null,"url":null,"abstract":"This paper presents various thermal management options for a high-performance RISC microprocessor available for controlled-collapse-chip-connection (C4) die attached to a ceramic-ball-grid-array substrate (CBGA), as they apply to air-cooled systems. Computational-fluid dynamics (CFD) methods are used to solve the conjugate heat transfer problems and a thermal test vehicle mounted to a printed-circuit board was used to validate the models. The internal package's contribution is typically less than 18% of the overall junction-to-ambient temperature rise. Of this 18%, approximately 85% is associated with the thermal paste internally sealed; while, the lid and the silicon chip account for the other 15% (approximately equal). For moderate airflow applications in the 1 to 4 m/s, the PowerPC 620 microprocessor will require a relatively large heat sink, approximately 20 times that of the C4/CBGA package, to maintain its die-junction temperature. The proper selection of a thermal interface material is critical in minimizing the thermal contact resistance between the package and the heat sink. Considering, the low interface pressure, the synthetic grease offers the best performance.","PeriodicalId":143519,"journal":{"name":"1996 Proceedings 46th Electronic Components and Technology Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings 46th Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.1996.517455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents various thermal management options for a high-performance RISC microprocessor available for controlled-collapse-chip-connection (C4) die attached to a ceramic-ball-grid-array substrate (CBGA), as they apply to air-cooled systems. Computational-fluid dynamics (CFD) methods are used to solve the conjugate heat transfer problems and a thermal test vehicle mounted to a printed-circuit board was used to validate the models. The internal package's contribution is typically less than 18% of the overall junction-to-ambient temperature rise. Of this 18%, approximately 85% is associated with the thermal paste internally sealed; while, the lid and the silicon chip account for the other 15% (approximately equal). For moderate airflow applications in the 1 to 4 m/s, the PowerPC 620 microprocessor will require a relatively large heat sink, approximately 20 times that of the C4/CBGA package, to maintain its die-junction temperature. The proper selection of a thermal interface material is critical in minimizing the thermal contact resistance between the package and the heat sink. Considering, the low interface pressure, the synthetic grease offers the best performance.