{"title":"Synthesizing data structure transformations from input-output examples","authors":"John K. Feser, Swarat Chaudhuri, Işıl Dillig","doi":"10.1145/2737924.2737977","DOIUrl":null,"url":null,"abstract":"We present a method for example-guided synthesis of functional programs over recursive data structures. Given a set of input-output examples, our method synthesizes a program in a functional language with higher-order combinators like map and fold. The synthesized program is guaranteed to be the simplest program in the language to fit the examples. Our approach combines three technical ideas: inductive generalization, deduction, and enumerative search. First, we generalize the input-output examples into hypotheses about the structure of the target program. For each hypothesis, we use deduction to infer new input/output examples for the missing subexpressions. This leads to a new subproblem where the goal is to synthesize expressions within each hypothesis. Since not every hypothesis can be realized into a program that fits the examples, we use a combination of best-first enumeration and deduction to search for a hypothesis that meets our needs. We have implemented our method in a tool called λ2, and we evaluate this tool on a large set of synthesis problems involving lists, trees, and nested data structures. The experiments demonstrate the scalability and broad scope of λ2. A highlight is the synthesis of a program believed to be the world's earliest functional pearl.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"303","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 303
Abstract
We present a method for example-guided synthesis of functional programs over recursive data structures. Given a set of input-output examples, our method synthesizes a program in a functional language with higher-order combinators like map and fold. The synthesized program is guaranteed to be the simplest program in the language to fit the examples. Our approach combines three technical ideas: inductive generalization, deduction, and enumerative search. First, we generalize the input-output examples into hypotheses about the structure of the target program. For each hypothesis, we use deduction to infer new input/output examples for the missing subexpressions. This leads to a new subproblem where the goal is to synthesize expressions within each hypothesis. Since not every hypothesis can be realized into a program that fits the examples, we use a combination of best-first enumeration and deduction to search for a hypothesis that meets our needs. We have implemented our method in a tool called λ2, and we evaluate this tool on a large set of synthesis problems involving lists, trees, and nested data structures. The experiments demonstrate the scalability and broad scope of λ2. A highlight is the synthesis of a program believed to be the world's earliest functional pearl.