Korean part-of-speech tagging based on context information

Young-Min An, Hee-Dong Lim, Young-Hoon Seo
{"title":"Korean part-of-speech tagging based on context information","authors":"Young-Min An, Hee-Dong Lim, Young-Hoon Seo","doi":"10.1109/ISIE.2001.931809","DOIUrl":null,"url":null,"abstract":"This paper describes a part-of-speech tagging system using both rules and statistical information based on context information between an ambiguous word and words around it to resolve lexical ambiguities. The rules and statistical information are composed of POS tag and/or morpheme for an ambiguous word, and POS tags and/or morphemes for words around it. The system apply rules first, and then applies statistical information when the ambiguities have not been resolved. Experimental results shows that our POS tagging system has high-accuracy and broad coverage.","PeriodicalId":124749,"journal":{"name":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2001.931809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a part-of-speech tagging system using both rules and statistical information based on context information between an ambiguous word and words around it to resolve lexical ambiguities. The rules and statistical information are composed of POS tag and/or morpheme for an ambiguous word, and POS tags and/or morphemes for words around it. The system apply rules first, and then applies statistical information when the ambiguities have not been resolved. Experimental results shows that our POS tagging system has high-accuracy and broad coverage.
基于上下文信息的韩国语词性标注
本文描述了一种基于歧义词及其周围词的上下文信息,利用规则和统计信息的词性标注系统来解决词汇歧义问题。规则和统计信息由歧义词的词性标记和/或语素以及该词周围词的词性标记和/或语素组成。系统先应用规则,在歧义未解决时再应用统计信息。实验结果表明,该系统具有准确率高、覆盖范围广的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信