Optimally Hiding Object Sizes with Constrained Padding

Andrew C. Reed, M. Reiter
{"title":"Optimally Hiding Object Sizes with Constrained Padding","authors":"Andrew C. Reed, M. Reiter","doi":"10.1109/CSF57540.2023.00004","DOIUrl":null,"url":null,"abstract":"Among the most challenging traffic-analysis attacks to confound are those leveraging the sizes of objects downloaded over the network. In this paper we systematically analyze this problem under realistic constraints regarding the padding overhead that the object store is willing to incur. We give algorithms to compute privacy-optimal padding schemes—specifically that minimize the network observer's information gain from a downloaded object's padded size—in several scenarios of interest: per-object padding, in which the object store responds to each request for an object with the same padded copy; per-request padding, in which the object store pads an object anew each time it serves that object; and a scenario unlike the previous ones in that the object store is unable to leverage a known distribution over the object queries. We provide constructions for privacy-optimal padding in each case, compare them to recent contenders in the research literature, and evaluate their performance on practical datasets.","PeriodicalId":179870,"journal":{"name":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF57540.2023.00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Among the most challenging traffic-analysis attacks to confound are those leveraging the sizes of objects downloaded over the network. In this paper we systematically analyze this problem under realistic constraints regarding the padding overhead that the object store is willing to incur. We give algorithms to compute privacy-optimal padding schemes—specifically that minimize the network observer's information gain from a downloaded object's padded size—in several scenarios of interest: per-object padding, in which the object store responds to each request for an object with the same padded copy; per-request padding, in which the object store pads an object anew each time it serves that object; and a scenario unlike the previous ones in that the object store is unable to leverage a known distribution over the object queries. We provide constructions for privacy-optimal padding in each case, compare them to recent contenders in the research literature, and evaluate their performance on practical datasets.
最佳隐藏对象大小与约束填充
最具挑战性的流量分析攻击是那些利用通过网络下载的对象大小的攻击。在本文中,我们系统地分析了这个问题在现实的约束下,关于填充开销,对象存储愿意招致。我们给出了计算隐私最优填充方案的算法——特别是最小化网络观察者从下载对象的填充大小中获得的信息——在几个感兴趣的场景中:每个对象填充,其中对象存储用相同的填充副本响应对对象的每个请求;每次请求填充(Per-request padding),对象存储库在每次服务一个对象时重新填充一个对象;与前面的场景不同的是,对象存储无法在对象查询上利用已知的分布。我们在每种情况下都提供了隐私最优填充的结构,将它们与研究文献中的最新竞争者进行比较,并评估它们在实际数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信