G. Bonifazi, G. Capobianco, R. Gasbarrone, S. Serranti
{"title":"Cold Chain Maintenance Evaluation of Pre-Cooked Pasta by Visible and Short Wave InfraRed Spectroscopy","authors":"G. Bonifazi, G. Capobianco, R. Gasbarrone, S. Serranti","doi":"10.1109/ICECCE52056.2021.9514114","DOIUrl":null,"url":null,"abstract":"Pasta is widely used in many cuisines all around the world for its important nutritional properties. The quality assurance and the maintenance of the cold chain of pre-cooked pasta products have a significant impact in economic terms on the manufacturing companies. For this reason, a fast, reliable, not-destructive and non-invasive method is needed to fulfill the above-mentioned goals. Visible and Near InfraRed spectroscopy, coupled with chemometric analysis, are powerful tools that can make the production and supply of pre-cooked pasta more transparent, also reducing food waste. In this study, a spectrophotoradiometer operating in the Visible - Short Wave InfraRed (Vis-SWIR) range (350-2500 nm) was used to acquire reflectance spectra on pre-cooked pasta samples, with two levels of saltiness, produced in Italy and intended for the US market. Partial Least Squares - Discriminant Analysis (PLS-DA) classification models were calibrated and validated to recognize the samples according to their salting and physical conditions (i.e. frozen/thawed), starting from their spectral signatures. Classification performances showed promising ability in characterizing samples according to the previously mentioned attributes.","PeriodicalId":302947,"journal":{"name":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE52056.2021.9514114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Pasta is widely used in many cuisines all around the world for its important nutritional properties. The quality assurance and the maintenance of the cold chain of pre-cooked pasta products have a significant impact in economic terms on the manufacturing companies. For this reason, a fast, reliable, not-destructive and non-invasive method is needed to fulfill the above-mentioned goals. Visible and Near InfraRed spectroscopy, coupled with chemometric analysis, are powerful tools that can make the production and supply of pre-cooked pasta more transparent, also reducing food waste. In this study, a spectrophotoradiometer operating in the Visible - Short Wave InfraRed (Vis-SWIR) range (350-2500 nm) was used to acquire reflectance spectra on pre-cooked pasta samples, with two levels of saltiness, produced in Italy and intended for the US market. Partial Least Squares - Discriminant Analysis (PLS-DA) classification models were calibrated and validated to recognize the samples according to their salting and physical conditions (i.e. frozen/thawed), starting from their spectral signatures. Classification performances showed promising ability in characterizing samples according to the previously mentioned attributes.