Poonam Chaturvedi, A. Singh, A. Tiwari, D. Kulshreshtha, P. Maurya, A. Thacker
{"title":"Proprioceptive neuromuscular facilitation (PNF) vs. task specific training in acute stroke: the effects on neuroplasticity","authors":"Poonam Chaturvedi, A. Singh, A. Tiwari, D. Kulshreshtha, P. Maurya, A. Thacker","doi":"10.15406/MOJAP.2018.05.00181","DOIUrl":null,"url":null,"abstract":"Stroke is the major cause of disability. Disability associated with hemiplegia or hemiparesis markedly limits the independent living and social participation in at least half of all stroke survivors.1 Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Although many molecular signalling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke.2 Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome post stroke. A variety of neurologically based techniques are used by physical therapists in the treatment of hemiplegic patients. Although these techniques are used widely, few studies have been reported in the literature validating these diverse approaches for specific conditions or problems. Proprioceptive Neuromuscular Facilitation (PNF) is a philosophy of treatment based on principles of neurophysiology. Kabat3,4 suggested that patterns of movements performed in combination with other facilitatory procedures result in enhanced voluntary responses. The PNF approach to treatment uses the principle (based on early phylogenetic and embryologic observations that control of motion proceeds from proximal to distal body regions. Facilitation of trunk control, therefore, is used to influence the extremities.3–8 Studies reported PNF intervention in subacute and chronic stroke. Studies to the best of our knowledge regarding PNF implementation in acute stroke and its effects on neuroplasticity are still lacking. On the other side a task-oriented exercise program as a new strategy focuses on functional retraining in subjects with stroke by using multi-system interactions, including the musculoskeletal, cognitive, and neurological systems.9–11 Task oriented exercise focuses on individual’s goals and personal needs; and using verbal and visual feedback during practice.9,12,13","PeriodicalId":115147,"journal":{"name":"MOJ Anatomy & Physiology","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOJ Anatomy & Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/MOJAP.2018.05.00181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Stroke is the major cause of disability. Disability associated with hemiplegia or hemiparesis markedly limits the independent living and social participation in at least half of all stroke survivors.1 Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Although many molecular signalling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke.2 Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome post stroke. A variety of neurologically based techniques are used by physical therapists in the treatment of hemiplegic patients. Although these techniques are used widely, few studies have been reported in the literature validating these diverse approaches for specific conditions or problems. Proprioceptive Neuromuscular Facilitation (PNF) is a philosophy of treatment based on principles of neurophysiology. Kabat3,4 suggested that patterns of movements performed in combination with other facilitatory procedures result in enhanced voluntary responses. The PNF approach to treatment uses the principle (based on early phylogenetic and embryologic observations that control of motion proceeds from proximal to distal body regions. Facilitation of trunk control, therefore, is used to influence the extremities.3–8 Studies reported PNF intervention in subacute and chronic stroke. Studies to the best of our knowledge regarding PNF implementation in acute stroke and its effects on neuroplasticity are still lacking. On the other side a task-oriented exercise program as a new strategy focuses on functional retraining in subjects with stroke by using multi-system interactions, including the musculoskeletal, cognitive, and neurological systems.9–11 Task oriented exercise focuses on individual’s goals and personal needs; and using verbal and visual feedback during practice.9,12,13