Asymptotic Properties of MLE's for Distributions Generated from an Exponential Distribution by a Generalized Log-Logistic Transformation

J. Gleaton, Ping Sa, S. Hamid
{"title":"Asymptotic Properties of MLE's for Distributions Generated from an Exponential Distribution by a Generalized Log-Logistic Transformation","authors":"J. Gleaton, Ping Sa, S. Hamid","doi":"10.37119/jpss2022.v20i1.543","DOIUrl":null,"url":null,"abstract":"ABSTRACT.  A generalized log-logistic (GLL) family of lifetime distributions is one in which any pair of distributions are related through a GLL transformation, for some (non-negative) value of the transformation parameter k (the odds function of the second distribution is the k-th power of the odds function of the first distribution).  We consider GLL families generated from an exponential distribution.  It is shown that the Maximum Likelihood Estimators (MLE’s) for the parameters of the generated, or composite, distribution have the properties of strong consistency and asymptotic normality and efficiency.  Data simulation is also found to support the condition of asymptotic efficiency.    \n  \nKeywords Generalized log-logistic exponential distribution; asymptotic properties of MLE’s; simulation","PeriodicalId":161562,"journal":{"name":"Journal of Probability and Statistical Science","volume":"85 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37119/jpss2022.v20i1.543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT.  A generalized log-logistic (GLL) family of lifetime distributions is one in which any pair of distributions are related through a GLL transformation, for some (non-negative) value of the transformation parameter k (the odds function of the second distribution is the k-th power of the odds function of the first distribution).  We consider GLL families generated from an exponential distribution.  It is shown that the Maximum Likelihood Estimators (MLE’s) for the parameters of the generated, or composite, distribution have the properties of strong consistency and asymptotic normality and efficiency.  Data simulation is also found to support the condition of asymptotic efficiency.      Keywords Generalized log-logistic exponential distribution; asymptotic properties of MLE’s; simulation
用广义对数-逻辑变换从指数分布生成的分布的最大似然渐近性质
抽象的。广义对数-逻辑(GLL)寿命分布族是这样一种分布,其中任意一对分布都通过GLL变换相关联,对于变换参数k的某个(非负)值(第二个分布的概率函数是第一个分布的概率函数的k次幂)。我们考虑由指数分布产生的GLL族。结果表明,所生成的或复合分布的参数的极大似然估计量具有强相合性、渐近正态性和有效性。数据仿真也支持渐近效率的条件。广义对数-logistic指数分布;MLE的渐近性质;模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信