A 10MHz piezoresistive MEMS resonator with high Q

J.t.m. Beek, P. Steeneken, B. Giesbers
{"title":"A 10MHz piezoresistive MEMS resonator with high Q","authors":"J.t.m. Beek, P. Steeneken, B. Giesbers","doi":"10.1109/FREQ.2006.275432","DOIUrl":null,"url":null,"abstract":"A novel bulk mode MEMS resonator is presented where mechanical motion is detected using the piezoresistive properties of Si. The piezoresistive readout allows for a high transduction efficiency. The transconductance gm obtained in this manner can be many times higher than the admittance Ym obtained in MEMS resonators that use capacitive read-out. By means of a small signal model it is shown that the transconductance is insensitive to geometric scaling, which allows for the realization of miniature high frequency MEMS resonators and oscillators without performance reduction. The piezoresistive detection method is experimentally validated using a 10MHz bulk acoustic mode resonator processed on SOI. Even for a transduction gap as large as 1.3 mum, it is shown that the transconductance can be as high as 90 muS combined with a Q-factor of 125.000.","PeriodicalId":445945,"journal":{"name":"2006 IEEE International Frequency Control Symposium and Exposition","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Frequency Control Symposium and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2006.275432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

A novel bulk mode MEMS resonator is presented where mechanical motion is detected using the piezoresistive properties of Si. The piezoresistive readout allows for a high transduction efficiency. The transconductance gm obtained in this manner can be many times higher than the admittance Ym obtained in MEMS resonators that use capacitive read-out. By means of a small signal model it is shown that the transconductance is insensitive to geometric scaling, which allows for the realization of miniature high frequency MEMS resonators and oscillators without performance reduction. The piezoresistive detection method is experimentally validated using a 10MHz bulk acoustic mode resonator processed on SOI. Even for a transduction gap as large as 1.3 mum, it is shown that the transconductance can be as high as 90 muS combined with a Q-factor of 125.000.
一种10MHz高Q值压阻式MEMS谐振器
提出了一种新型体模MEMS谐振器,利用硅的压阻特性检测机械运动。压阻式读数允许高转导效率。以这种方式获得的跨导gm可以比使用电容读出的MEMS谐振器获得的导纳Ym高许多倍。通过一个小信号模型,表明跨导对几何尺度不敏感,从而可以实现不降低性能的微型高频MEMS谐振器和振荡器。利用SOI处理的10MHz体声模谐振器对压阻检测方法进行了实验验证。即使转导间隙为1.3 μ m,跨导也可以高达90 μ m, q因子为12.5万。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信