H. Badem, Abdullah Çalıskan, A. Basturk, M. E. Yuksel
{"title":"Classification of human activity by using a Stacked Autoencoder","authors":"H. Badem, Abdullah Çalıskan, A. Basturk, M. E. Yuksel","doi":"10.1109/TIPTEKNO.2016.7863135","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of a deep neural network architecture that consists of stackted autoencoder with two autoencoders and a softmax layer for the purpose of human activity classification. Th performance of the proposed architecture is tested on a commonly used data set known as Human Activity Recognition Using Smartphones. It is observed that the proposed method yields better classification results than the representative state-of-the-art methods provided that the parameters of the deep network are suitably optimized.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper investigates the application of a deep neural network architecture that consists of stackted autoencoder with two autoencoders and a softmax layer for the purpose of human activity classification. Th performance of the proposed architecture is tested on a commonly used data set known as Human Activity Recognition Using Smartphones. It is observed that the proposed method yields better classification results than the representative state-of-the-art methods provided that the parameters of the deep network are suitably optimized.