Multi-Robot Adversarial Resilience using Control Barrier Functions

Matthew Cavorsi, Beatrice Capelli, Lorenzo Sabattini, Stephanie Gil
{"title":"Multi-Robot Adversarial Resilience using Control Barrier Functions","authors":"Matthew Cavorsi, Beatrice Capelli, Lorenzo Sabattini, Stephanie Gil","doi":"10.15607/rss.2022.xviii.053","DOIUrl":null,"url":null,"abstract":"—In this paper we present a control barrier function- based (CBF) resilience controller that provides resilience in a multi-robot network to adversaries. Previous approaches provide resilience by virtue of specific linear combinations of multiple control constraints. These combinations can be difficult to find and are sensitive to the addition of new constraints. Unlike previous approaches, the proposed CBF provides network resilience and is easily amenable to multiple other control constraints, such as collision and obstacle avoidance. The inclusion of such con- straints is essential in order to implement a resilience controller on realistic robot platforms. We demonstrate the viability of the CBF-based resilience controller on real robotic systems through case studies on a multi-robot flocking problem in cluttered environments with the presence of adversarial robots.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

—In this paper we present a control barrier function- based (CBF) resilience controller that provides resilience in a multi-robot network to adversaries. Previous approaches provide resilience by virtue of specific linear combinations of multiple control constraints. These combinations can be difficult to find and are sensitive to the addition of new constraints. Unlike previous approaches, the proposed CBF provides network resilience and is easily amenable to multiple other control constraints, such as collision and obstacle avoidance. The inclusion of such con- straints is essential in order to implement a resilience controller on realistic robot platforms. We demonstrate the viability of the CBF-based resilience controller on real robotic systems through case studies on a multi-robot flocking problem in cluttered environments with the presence of adversarial robots.
基于控制障碍函数的多机器人对抗弹性
在本文中,我们提出了一种基于控制屏障函数(CBF)的弹性控制器,该控制器在多机器人网络中为对手提供弹性。以前的方法通过多个控制约束的特定线性组合来提供弹性。这些组合可能很难找到,并且对添加的新约束很敏感。与以前的方法不同,所提出的CBF提供了网络弹性,并且很容易适应多种其他控制约束,例如碰撞和避障。为了在现实机器人平台上实现弹性控制器,包含这些约束是必不可少的。通过对存在敌对机器人的混乱环境中的多机器人群集问题的案例研究,我们证明了基于cbf的弹性控制器在真实机器人系统上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信