{"title":"Development of an arcless DC circuit break using a mechanical contact and a semiconductor device","authors":"S. Zen, Tatsuya Hayakawa, K. Nakayama, K. Yasuoka","doi":"10.1109/HOLM.2017.8088095","DOIUrl":null,"url":null,"abstract":"Direct current circuit breakers (DCCBs) have receive considerable attention due to their increasing demand in DC power transmission and distributed generation. A hybrid DCCB comprising a mechanical contact, semiconductor device (SiC- MOSFET), and metal oxide varistor offers a small contact resistance when the mechanical contact is closed. After opening the mechanical contact, the contact voltage increases because a molten metal -bridge is formed between the contacts as a result of joule heating. This molten-bridge voltage promotes the current commutation from the mechanical contact to the SiC-MOSFET. After the current commutation is completed, a fast current interruption can be achieved by turning off the SiC-MOSFET. Therefore, the hybrid DCCB can achieve both a small contact resistance and a fast current interruption. In our previous papers, an arcless commutation was reported at the initial stage of the hybrid DCCB opening under a special condition. In this report, higher molten-bridge voltage was obtained using 2-pole contacts connected in series and using high-boiling metals. The higher molten-bridge voltage enabled the hybrid DCCB to interrupt larger current without any arc discharge. Finally, we performed DC current (300 V-150 A) interruption experiment, and succeeded in obtaining arcless current interruption with a probability of 100%.","PeriodicalId":354484,"journal":{"name":"2017 IEEE Holm Conference on Electrical Contacts","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Holm Conference on Electrical Contacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2017.8088095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Direct current circuit breakers (DCCBs) have receive considerable attention due to their increasing demand in DC power transmission and distributed generation. A hybrid DCCB comprising a mechanical contact, semiconductor device (SiC- MOSFET), and metal oxide varistor offers a small contact resistance when the mechanical contact is closed. After opening the mechanical contact, the contact voltage increases because a molten metal -bridge is formed between the contacts as a result of joule heating. This molten-bridge voltage promotes the current commutation from the mechanical contact to the SiC-MOSFET. After the current commutation is completed, a fast current interruption can be achieved by turning off the SiC-MOSFET. Therefore, the hybrid DCCB can achieve both a small contact resistance and a fast current interruption. In our previous papers, an arcless commutation was reported at the initial stage of the hybrid DCCB opening under a special condition. In this report, higher molten-bridge voltage was obtained using 2-pole contacts connected in series and using high-boiling metals. The higher molten-bridge voltage enabled the hybrid DCCB to interrupt larger current without any arc discharge. Finally, we performed DC current (300 V-150 A) interruption experiment, and succeeded in obtaining arcless current interruption with a probability of 100%.