Deep neural network for face recognition based on sparse autoencoder

Zhuomin Zhang, Jing Li, Renbing Zhu
{"title":"Deep neural network for face recognition based on sparse autoencoder","authors":"Zhuomin Zhang, Jing Li, Renbing Zhu","doi":"10.1109/CISP.2015.7407948","DOIUrl":null,"url":null,"abstract":"Face recognition is a very important research topic in computer vision because of its many potential applications. In this paper, we investigated a face recognition method based on deep neural network. The sparse coding neural network and the softmax classifiers were used in this paper to build and train the deep hierarchical network after the face image preprocessing. The method is evaluated on the ORL, Yale, Yale-B and PERET face database, respectively. The experimental results show that the deep learning method can abstractly express the original data with efficiency and accuracy, and achieve a good performance in the conditions of illumination, expression, posture and low resolution.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7407948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Face recognition is a very important research topic in computer vision because of its many potential applications. In this paper, we investigated a face recognition method based on deep neural network. The sparse coding neural network and the softmax classifiers were used in this paper to build and train the deep hierarchical network after the face image preprocessing. The method is evaluated on the ORL, Yale, Yale-B and PERET face database, respectively. The experimental results show that the deep learning method can abstractly express the original data with efficiency and accuracy, and achieve a good performance in the conditions of illumination, expression, posture and low resolution.
基于稀疏自编码器的深度神经网络人脸识别
人脸识别是计算机视觉领域一个非常重要的研究课题,具有广泛的应用前景。研究了一种基于深度神经网络的人脸识别方法。本文采用稀疏编码神经网络和softmax分类器对人脸图像进行预处理后的深度层次网络进行构建和训练。在ORL、Yale、Yale- b和PERET人脸数据库上分别对该方法进行了评价。实验结果表明,深度学习方法能够高效、准确地对原始数据进行抽象表达,在光照、表情、姿态、低分辨率等条件下均取得了较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信