Контактная задача об осесимметричном кручении упругого слоя посредством цилиндрического штампа

А. В. Гаспарян, С. М. Мхитарян, А. В. Саакян
{"title":"Контактная задача об осесимметричном кручении упругого слоя посредством цилиндрического штампа","authors":"А. В. Гаспарян, С. М. Мхитарян, А. В. Саакян","doi":"10.54503/0002-3051-2022.75.3-20","DOIUrl":null,"url":null,"abstract":"The paper studies the axis-symmetric contact problem between an elastic layer and a rigid cylindrical circular stamp under torque. The stamp adheres to the upper boundary of the layer whereas the lower boundary of the layer is rigidly fastened. With the application of Hankel integral transform solving the problem reduces to solving the first kind Fredholm integral equation (IE) with symmetrical kernel, represented as a sum of its principal part, Weber-Sonin integral, and the regular kernel. It is estimated that once its height attains a certain level, the layer actually deforms as a semi-space. In the process, through Abel IE method, the solution of the well-known Reissner-Sagoci problem is obtained once again and the original first kind Fredholm IE is reduced to the second kind Fredholm IE. Concurrently, using the collocation method combined with Gauss type quadrature formulas for integral estimation, the original IE reduces to a finite system of linear algebraic equations. To obtain this quadrature formula, properties of Gegenbauer and Chebyshev orthogonal polynomials are used. In the enough wide range of change of characteristic elastic and geometrical parameters of the problem numerical analysis is performed and patterns of changes of tangential contact stresses under the stamp as well as the angle of twist of the stamp are identified.","PeriodicalId":399202,"journal":{"name":"Mechanics - Proceedings of National Academy of Sciences of Armenia","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics - Proceedings of National Academy of Sciences of Armenia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54503/0002-3051-2022.75.3-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper studies the axis-symmetric contact problem between an elastic layer and a rigid cylindrical circular stamp under torque. The stamp adheres to the upper boundary of the layer whereas the lower boundary of the layer is rigidly fastened. With the application of Hankel integral transform solving the problem reduces to solving the first kind Fredholm integral equation (IE) with symmetrical kernel, represented as a sum of its principal part, Weber-Sonin integral, and the regular kernel. It is estimated that once its height attains a certain level, the layer actually deforms as a semi-space. In the process, through Abel IE method, the solution of the well-known Reissner-Sagoci problem is obtained once again and the original first kind Fredholm IE is reduced to the second kind Fredholm IE. Concurrently, using the collocation method combined with Gauss type quadrature formulas for integral estimation, the original IE reduces to a finite system of linear algebraic equations. To obtain this quadrature formula, properties of Gegenbauer and Chebyshev orthogonal polynomials are used. In the enough wide range of change of characteristic elastic and geometrical parameters of the problem numerical analysis is performed and patterns of changes of tangential contact stresses under the stamp as well as the angle of twist of the stamp are identified.
轴对称弹性层通过圆柱形冲压的接触问题
研究了弹性层与刚性圆柱圆冲压件在扭矩作用下的轴对称接触问题。印章附着在该层的上边界,而该层的下边界则是刚性固定的。应用Hankel积分变换,求解问题简化为求解具有对称核的第一类Fredholm积分方程(IE),该方程表示为其主成分、Weber-Sonin积分和正则核的和。据估计,一旦其高度达到一定水平,该层实际上就会变形为半空间。在此过程中,通过Abel IE方法,再次得到了著名的Reissner-Sagoci问题的解,并将原来的第一类Fredholm IE简化为第二类Fredholm IE。同时,利用配点法结合高斯型求积分公式进行积分估计,将原IE简化为有限的线性代数方程组。利用Gegenbauer正交多项式和Chebyshev正交多项式的性质,得到了该正交公式。在问题的特征弹性参数和几何参数变化范围足够大的情况下,进行了数值分析,确定了压痕下切向接触应力的变化规律以及压痕的扭转角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信