Load Switching Analysis using Converter with Optimization Algorithm in Hybrid Renewable Energy System

S. Bharti, A. Dubey
{"title":"Load Switching Analysis using Converter with Optimization Algorithm in Hybrid Renewable Energy System","authors":"S. Bharti, A. Dubey","doi":"10.24113/ijoscience.v7i6.390","DOIUrl":null,"url":null,"abstract":"Recently, an increasing number of organizations have begun to view renewable energy and industries as opportunities rather than regulations in the context of their production, distribution, and services. In this paper, main objective of designing a grid integrated solar-wind hybrid energy system for driving loads for improving its reliability and efficiency. And the inverter control designing with an AI-based optimization algorithm to attain improved active power at the terminal of loading by reducing the losses. And Improvement in the reactive power output from the system by the inverter control by a designed hybrid system that can compensate the reactive power requirement when required. The active power output from the system has enhanced to 77860 W in the system having converter regulated from the proposed controller that is MF_DEH from 77230 as a result of improved performance and reduced losses. The system was first compared with the PI-directed inverter control and the THD% in current, as well as voltage waveform, was found to be reduced to 0.11% in voltage and 0.41% in current from 0.86% and 1.93% respectively.","PeriodicalId":429424,"journal":{"name":"SMART MOVES JOURNAL IJOSCIENCE","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMART MOVES JOURNAL IJOSCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24113/ijoscience.v7i6.390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, an increasing number of organizations have begun to view renewable energy and industries as opportunities rather than regulations in the context of their production, distribution, and services. In this paper, main objective of designing a grid integrated solar-wind hybrid energy system for driving loads for improving its reliability and efficiency. And the inverter control designing with an AI-based optimization algorithm to attain improved active power at the terminal of loading by reducing the losses. And Improvement in the reactive power output from the system by the inverter control by a designed hybrid system that can compensate the reactive power requirement when required. The active power output from the system has enhanced to 77860 W in the system having converter regulated from the proposed controller that is MF_DEH from 77230 as a result of improved performance and reduced losses. The system was first compared with the PI-directed inverter control and the THD% in current, as well as voltage waveform, was found to be reduced to 0.11% in voltage and 0.41% in current from 0.86% and 1.93% respectively.
基于优化算法的混合可再生能源系统变流器负荷切换分析
最近,越来越多的组织开始将可再生能源和产业视为机遇,而不是其生产、分销和服务方面的法规。本文的主要目标是设计一种并网太阳能-风混合动力驱动负荷系统,以提高系统的可靠性和效率。采用基于人工智能的优化算法进行逆变器控制设计,通过降低损耗来提高负载终端的有功功率。并设计了一种可在需要时补偿无功功率需求的混合系统,通过逆变器控制提高了系统的无功功率输出。由于性能的提高和损耗的减少,系统的有功功率输出已经增强到77860 W,系统的转换器由提议的控制器MF_DEH从77230调节。首先将该系统与pi定向逆变器控制进行比较,发现电流和电压波形的THD%分别由0.86%和1.93%降低到0.11%和0.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信