The impact of FOU size and number of MFs on the prediction performance of Interval Type-2 Fuzzy Logic Systems

Saima Hassan, A. Khosravi, J. Jaafar
{"title":"The impact of FOU size and number of MFs on the prediction performance of Interval Type-2 Fuzzy Logic Systems","authors":"Saima Hassan, A. Khosravi, J. Jaafar","doi":"10.1109/ISMSC.2015.7594036","DOIUrl":null,"url":null,"abstract":"The inclusion of footprint of uncertainty (FOU) in Interval Type-2 Fuzzy Logic Systems (IT2FLSs) made them suitable for modelling uncertainty. This paper investigates the impact of FOU size and number of membership functions (MFs) on the model's prediction performance. An IT2FLS trained using a fast learning method is designed here. The uncertainty in data is captured by designing the IT2FLS with different sizes of FOU. The concept of extreme learning machine (ELM) is then used for optimal tuning of IT2FLS consequent parameters. The designed model is applied to the chaotic time series prediction. During simulation it is observed that the increase in FOU size with the increase in number of MFs give better prediction results.","PeriodicalId":407600,"journal":{"name":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSC.2015.7594036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The inclusion of footprint of uncertainty (FOU) in Interval Type-2 Fuzzy Logic Systems (IT2FLSs) made them suitable for modelling uncertainty. This paper investigates the impact of FOU size and number of membership functions (MFs) on the model's prediction performance. An IT2FLS trained using a fast learning method is designed here. The uncertainty in data is captured by designing the IT2FLS with different sizes of FOU. The concept of extreme learning machine (ELM) is then used for optimal tuning of IT2FLS consequent parameters. The designed model is applied to the chaotic time series prediction. During simulation it is observed that the increase in FOU size with the increase in number of MFs give better prediction results.
FOU大小和MFs数量对区间2型模糊逻辑系统预测性能的影响
区间2型模糊逻辑系统(it2fls)中不确定性足迹(footprint of uncertainty, FOU)的引入使其适合于不确定性建模。本文研究了FOU大小和隶属函数数量对模型预测性能的影响。本文设计了一个使用快速学习方法训练的IT2FLS。通过设计不同尺寸FOU的IT2FLS来捕捉数据的不确定性。然后使用极限学习机(ELM)的概念对IT2FLS后续参数进行优化调整。将所设计的模型应用于混沌时间序列预测。在模拟过程中,观察到FOU的大小随着MFs数量的增加而增加,可以得到较好的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信