A dynamic model for neural networks

T.E. Dabbous, K.A. Shafie
{"title":"A dynamic model for neural networks","authors":"T.E. Dabbous, K.A. Shafie","doi":"10.1109/NRSC.1999.760928","DOIUrl":null,"url":null,"abstract":"We present a novel dynamical model for neural networks. The model consists of two sets of differential equations: one for the hidden layers and the other for the output layer. Since the model parameters (or weights) are assumed unknown, one may choose these parameters so that the neural output behaves in a certain prescribed manner. The proposed model can be very useful for many engineering applications such as communication, control and system identification. Numerical examples are given to show the effectiveness of the proposed neural model.","PeriodicalId":250544,"journal":{"name":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1999.760928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a novel dynamical model for neural networks. The model consists of two sets of differential equations: one for the hidden layers and the other for the output layer. Since the model parameters (or weights) are assumed unknown, one may choose these parameters so that the neural output behaves in a certain prescribed manner. The proposed model can be very useful for many engineering applications such as communication, control and system identification. Numerical examples are given to show the effectiveness of the proposed neural model.
神经网络的动态模型
提出了一种新的神经网络动力学模型。该模型由两组微分方程组成:一组用于隐藏层,另一组用于输出层。由于假设模型参数(或权重)是未知的,因此可以选择这些参数,使神经输出以某种规定的方式表现。该模型可用于通信、控制和系统识别等工程应用。数值算例表明了所提神经模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信