Membership-based clustering of heterogeneous fuzzy data

G. Herbst, Arne-Jens Hempel, Rainer Fletling, S. Bocklisch
{"title":"Membership-based clustering of heterogeneous fuzzy data","authors":"G. Herbst, Arne-Jens Hempel, Rainer Fletling, S. Bocklisch","doi":"10.2991/eusflat.2011.119","DOIUrl":null,"url":null,"abstract":"This article contributes to clustering and fuzzy modelling of data such that specific characteristics of each datum can be incorporated. Particularly, each object may exhibit an individual area of influence in its feature space, for which it is representative. For such objects, a similarity measure is introduced, which is used to modify common clustering algorithms to take each object’s extent into account when finding clusters. A real-world example demonstrates the practical usability of the presented methods, which deliver results in accordance to findings of experts in that field.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article contributes to clustering and fuzzy modelling of data such that specific characteristics of each datum can be incorporated. Particularly, each object may exhibit an individual area of influence in its feature space, for which it is representative. For such objects, a similarity measure is introduced, which is used to modify common clustering algorithms to take each object’s extent into account when finding clusters. A real-world example demonstrates the practical usability of the presented methods, which deliver results in accordance to findings of experts in that field.
基于隶属关系的异构模糊数据聚类
本文有助于对数据进行聚类和模糊建模,以便将每个数据的具体特征纳入其中。特别是,每个对象可能在其具有代表性的特征空间中显示一个单独的影响区域。对于这些对象,引入了相似性度量,用于修改常见的聚类算法,以便在查找聚类时考虑每个对象的范围。一个现实世界的例子证明了所提出的方法的实际可用性,这些方法根据该领域专家的发现交付结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信