K. Yasuoka, Tsuboi Yoshiki, Tatsuya Hayakawa, Tamanosuke Oide, N. Takeuchi
{"title":"A hybrid DC circuit breaker with vacuum contact and SiC-MOSFET for arcless commutation","authors":"K. Yasuoka, Tsuboi Yoshiki, Tatsuya Hayakawa, Tamanosuke Oide, N. Takeuchi","doi":"10.1109/HOLM.2016.7780005","DOIUrl":null,"url":null,"abstract":"DC circuit breakers (DCCBs) have been intensively studied because of increasing demand for DC power transmission. A hybrid DC circuit breaker that consists of mechanical switches, semiconductor devices, and metal-oxide varistor (MOV) elements is a promising device to provide low contact resistance and a fast interruption. The semiconductor devices are turned on by the sustaining voltage of arc discharge generated between the metal contacts of the mechanical switch. Though arc duration time in the hybrid DCCB is shorter than that in classical mechanical CBs, the arc causes contact erosion. In this report, an arcless commutation is described that uses the molten metal-bridge voltage at the opening stage of the contacts. The magnitude of the molten-bridge voltage is just enough to turn on SiC-MOSFET devices under specific conditions. Arcless commutation of DC current was observed with a Ag-W vacuum contact and SiC-MOSFETs at current values of 78∼140 A.","PeriodicalId":117231,"journal":{"name":"2016 IEEE 62nd Holm Conference on Electrical Contacts (Holm)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 62nd Holm Conference on Electrical Contacts (Holm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2016.7780005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
DC circuit breakers (DCCBs) have been intensively studied because of increasing demand for DC power transmission. A hybrid DC circuit breaker that consists of mechanical switches, semiconductor devices, and metal-oxide varistor (MOV) elements is a promising device to provide low contact resistance and a fast interruption. The semiconductor devices are turned on by the sustaining voltage of arc discharge generated between the metal contacts of the mechanical switch. Though arc duration time in the hybrid DCCB is shorter than that in classical mechanical CBs, the arc causes contact erosion. In this report, an arcless commutation is described that uses the molten metal-bridge voltage at the opening stage of the contacts. The magnitude of the molten-bridge voltage is just enough to turn on SiC-MOSFET devices under specific conditions. Arcless commutation of DC current was observed with a Ag-W vacuum contact and SiC-MOSFETs at current values of 78∼140 A.