Forecasting of heart rate variability using wrist-worn heart rate monitor based on hidden Markov model

Sanghun Yun, C. Son, Sang-ho Lee, Won-Seok Kang
{"title":"Forecasting of heart rate variability using wrist-worn heart rate monitor based on hidden Markov model","authors":"Sanghun Yun, C. Son, Sang-ho Lee, Won-Seok Kang","doi":"10.23919/ELINFOCOM.2018.8330626","DOIUrl":null,"url":null,"abstract":"In this paper, we present Hidden Markov Models (HMM) approach for forecasting the changes of heart rate. Heart rate is an important indicator of the state of our body. Forecasting changes of heart rate is equivalent to forecasting changes of the body state. We use numerous HMM models that is trained by datasets clustered on similarity basis. We find the optimal models with best probabilities in various learned HMM models and use this model to predict next heart rate variability. The heart rate data are collected by Fitbit-HR from 190 healthy persons. The prediction performance was accuracy = 91.87% and recall = 91.67%.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"480 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present Hidden Markov Models (HMM) approach for forecasting the changes of heart rate. Heart rate is an important indicator of the state of our body. Forecasting changes of heart rate is equivalent to forecasting changes of the body state. We use numerous HMM models that is trained by datasets clustered on similarity basis. We find the optimal models with best probabilities in various learned HMM models and use this model to predict next heart rate variability. The heart rate data are collected by Fitbit-HR from 190 healthy persons. The prediction performance was accuracy = 91.87% and recall = 91.67%.
基于隐马尔可夫模型的腕式心率监测仪心率变异性预测
在本文中,我们提出隐马尔可夫模型(HMM)的方法来预测心率的变化。心率是我们身体状态的一个重要指标。预测心率的变化相当于预测身体状态的变化。我们使用了大量的HMM模型,这些模型由基于相似度聚类的数据集训练而成。我们在各种学习的HMM模型中找到具有最佳概率的最优模型,并使用该模型预测下一个心率变异性。心率数据由Fitbit-HR从190名健康人中收集。预测准确率为91.87%,召回率为91.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信