Efficient Hardware Realization of Convolutional Neural Networks Using Intra-Kernel Regular Pruning

Maurice Yang, Mahmoud Faraj, Assem Hussein, V. Gaudet
{"title":"Efficient Hardware Realization of Convolutional Neural Networks Using Intra-Kernel Regular Pruning","authors":"Maurice Yang, Mahmoud Faraj, Assem Hussein, V. Gaudet","doi":"10.1109/ISMVL.2018.00039","DOIUrl":null,"url":null,"abstract":"The recent trend toward increasingly deep convolutional neural networks (CNNs) leads to a higher demand of computational power and memory storage. Consequently, the deployment of CNNs in hardware has become more challenging. In this paper, we propose an Intra-Kernel Regular (IKR) pruning scheme to reduce the size and computational complexity of the CNNs by removing redundant weights at a fine-grained level. Unlike other pruning methods such as Fine-Grained pruning, IKR pruning maintains regular kernel structures that are exploitable in a hardware accelerator. Experimental results demonstrate up to 10× parameter reduction and 7× computational reduction at a cost of less than 1% degradation in accuracy versus the unpruned case.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The recent trend toward increasingly deep convolutional neural networks (CNNs) leads to a higher demand of computational power and memory storage. Consequently, the deployment of CNNs in hardware has become more challenging. In this paper, we propose an Intra-Kernel Regular (IKR) pruning scheme to reduce the size and computational complexity of the CNNs by removing redundant weights at a fine-grained level. Unlike other pruning methods such as Fine-Grained pruning, IKR pruning maintains regular kernel structures that are exploitable in a hardware accelerator. Experimental results demonstrate up to 10× parameter reduction and 7× computational reduction at a cost of less than 1% degradation in accuracy versus the unpruned case.
卷积神经网络核内正则剪枝的高效硬件实现
近年来,深度卷积神经网络(cnn)的发展趋势导致了对计算能力和内存存储的更高需求。因此,在硬件上部署cnn变得更具挑战性。在本文中,我们提出了一种核内规则(IKR)修剪方案,通过在细粒度级别上去除冗余权值来减小cnn的大小和计算复杂度。与其他修剪方法(如细粒度修剪)不同,IKR修剪维护可在硬件加速器中利用的常规内核结构。实验结果表明,与未修剪的情况相比,在精度下降不到1%的代价下,参数减少了10倍,计算减少了7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信