A. Giulietti, B. Bougard, V. Derudder, S. Dupont, J. Weijers, L. Perre
{"title":"A 80 Mb/s low-power scalable turbo codec core","authors":"A. Giulietti, B. Bougard, V. Derudder, S. Dupont, J. Weijers, L. Perre","doi":"10.1109/CICC.2002.1012851","DOIUrl":null,"url":null,"abstract":"Turbo coding has reached the step in which its astonishing coding gain is already being proven in real applications. Moreover, its applicability to future broadband communications systems is starting to be investigated. In order to be useful in this domain, special turbo codec architectures that cope with low latency, high throughput, low power consumption and high flexibility are needed. This paper presents an implementation of a convolutional turbo codec core based on innovative solutions for those requirements. The combination of a systematic data storage and transfer optimization with high and low level architectural solutions yields a final throughput up to 80.7 Mb/s, a decoding latency of 10 /spl mu/s and a power consumption of less than 50 nJ/bit. The 14.7 mm/sup 2/ full-duplex full-parallel core, implemented in a CMOS 0.18 /spl mu/m technology, is a complete flexible solution for broadband turbo coding.","PeriodicalId":209025,"journal":{"name":"Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2002.1012851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Turbo coding has reached the step in which its astonishing coding gain is already being proven in real applications. Moreover, its applicability to future broadband communications systems is starting to be investigated. In order to be useful in this domain, special turbo codec architectures that cope with low latency, high throughput, low power consumption and high flexibility are needed. This paper presents an implementation of a convolutional turbo codec core based on innovative solutions for those requirements. The combination of a systematic data storage and transfer optimization with high and low level architectural solutions yields a final throughput up to 80.7 Mb/s, a decoding latency of 10 /spl mu/s and a power consumption of less than 50 nJ/bit. The 14.7 mm/sup 2/ full-duplex full-parallel core, implemented in a CMOS 0.18 /spl mu/m technology, is a complete flexible solution for broadband turbo coding.